留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2023年  第40卷  第2期

电子书
综述
生物质材料对微纳塑料吸附性能的研究进展
朱高坚, 陈李栋, 段晟, 吴伟兵, 戴红旗, 卞辉洋
2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001
摘要:
废弃塑料在江河湖海中呈累积趋势,老化分解产生的微纳塑料严重污染水质,威胁生态环境和居民饮用水安全。传统处理方法,如物理絮凝、生物降解等,存在处理周期长、吸附效率低等问题。天然生物质含有大量的羟基、羧基等活性基团,对生物质进行物理处理或化学修饰改性能够改善孔隙结构和提高比表面积,可作为吸附微纳塑料的绿色材料。本文从微纳塑料的常规处理方法和基本特征出发,简要概况了不同类型微纳塑料对植物、动物和人体的潜在影响和危害,系统介绍了生物质材料(生物质炭、纤维素、甲壳素等)在微纳塑料吸附领域的研究现状,分析总结了生物质材料对微纳塑料的吸附行为、规律和作用机制,最后展望了生物质材料吸附微纳塑料的未来发展前景。
PEDOT∶PSS及其纳米复合材料热电性质的研究进展
鲍程鹏, 周亚杰, 董岚, 吴子华, 李奕怀, 谢华清, 王元元
2023, 40(2): 649-664. doi: 10.13801/j.cnki.fhclxb.20220505.001
摘要:
近年来,随着能源危机的加剧,可以将热能与电能进行直接转换的热电材料得到了广泛的关注。在众多热电材料体系中,有机无机纳米复合热电材料具有独特优势。相比于无机材料,有机材料成本低、质量轻、机械柔韧性好、热导率较低。添加不同类型的添加材料构成纳米复合材料后,额外引入的声子-界面散射能进一步降低热导率,同时有机无机材料能带不匹配引起的载流子筛选效应进一步提升塞贝克(Seebeck)系数。因此,目前大量工作证明有机无机纳米复合热电材料有潜力获得高的热电优值(Figure of merit,ZT),在微型热电制冷器件、柔性可穿戴发电设备、温度传感器等领域均具有光明的应用前景。本文聚焦聚(3, 4-乙烯二氧噻吩)∶聚(苯乙烯磺酸盐)(PEDOT∶PSS)热电材料及以其为基底构成的纳米复合材料热电性能的研究工作,综述了提升PEDOT∶PSS热电性能的物理方法、化学试剂改性法等。进一步重点讨论了加入不同类型的无机填料的PEDOT∶PSS基纳米复合材料热电性质的研究进展,并揭示了其热电性能提升的内在机制。
柔性纤维状电池研究进展
许帅, 孙江东, 孙鹏飞, 胡侨乐, 聂文琪, 徐珍珍
2023, 40(2): 665-677. doi: 10.13801/j.cnki.fhclxb.20220527.002
摘要:
纤维电池具有维度低、灵活性好、形状普适性强、与纺织品高度融合等特点,可满足柔性电子产品电路元件的供能需求。近年来纤维电池的研究,不仅关注于电极材料的微纳复合,探索多功能、可扩展和高集成系统的纤维电池逐渐成为研发的焦点。此外,规模化生产纤维状电池也取得了一定的突破,包括电池组装、集成、连续生产等。基于此,本文从纤维基底材料和制备工艺两方面对近期纤维电池的研究成果展开论述,并对工业化生产纤维电池的最新突破进行评述,最后,总结纤维状电池发展存在的问题并分析展望未来需要攻克的重点难点。
Ti3C2TX MXenes材料在超级电容器中的应用研究进展
张亚林, 王梦倩, 陈兴刚, 蔡艳青, 许莹
2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002
摘要:
近年来人们对储能设备的需求加大,超级电容器因其优异的性能而受到研究者青睐。二维过渡MXenes材料是一种类似于石墨烯的二维片层材料,具有独特的结构和丰富的官能团,其中Ti3C2TX MXenes材料因其具有优异的导电性、高比面积和高比电容等优点而被广泛用作超级电容器电极材料。然而,Ti3C2TX材料存在易氧化和自堆叠等问题,作为电极材料需要对其性能进行改性和优化。本文主要介绍了Ti3C2TX材料常用的制备方法(如HF刻蚀、氟化盐刻蚀、碱刻蚀、电化学刻蚀等)及Ti3C2TX在超级电容器应用过程的性能改性研究现状,包括构建Ti3C2TX多孔结构、进行表面修饰及制备Ti3C2TX复合电极,并展望了Ti3C2TX型超级电容器未来的发展趋势。
基于导电纤维的柔性电子器件研究进展
张文枭, 左杏薇, 曲丽君, 张学记, 苗锦雷
2023, 40(2): 688-709. doi: 10.13801/j.cnki.fhclxb.20220511.002
摘要:
柔性电子器件具有优异的灵活性,实现了与服装的无缝集成,在各种实际的可穿戴应用中具有巨大的潜力。一维纤维状电子器件由于其优异的柔韧性、可编织性及舒适性成为智能可穿戴领域的研究热点。首先,综述了用于纤维状柔性电子器件的一维可拉伸电极的研究进展,然后详细介绍了高性能一维纤维状柔性电子器件制备过程中具有代表性的导电材料、制造技术及一维柔性纤维进一步应用于各类电子器件的主要制备方法,另外总结了近年来基于柔性纤维状电子器件在智能可穿戴领域的应用。最后对一维纤维基智能可穿戴电子器件的机遇和挑战进行了批判性思考。
导电聚合物腐蚀防护涂层的制备与改性技术研究进展
金义杰, 陈智豪, 杨文忠, 詹胜鹏, 贾丹, 章武林, 马利欣, 段海涛
2023, 40(2): 710-725. doi: 10.13801/j.cnki.fhclxb.20220512.006
摘要:
我国海洋工程装备制造业正处在生存与发展的关键阶段,防腐涂层是降低基材腐蚀速率、提升其服役寿命最有效的方式之一。导电聚合物涂层由于其绿色环保、制备简单等优点及独特的导电与防腐机制,使其在金属腐蚀防护领域得到了广泛的应用。本文归纳总结了导电聚合物涂层的防腐机制,介绍了采用化学氧化和电化学合成两种方法制备导电聚合物涂层的现状,重点阐述了导电聚合物涂层的掺杂改性、共聚改性、分层设计3种改性技术对涂层耐蚀性能的提升效果,最后提出了导电聚合物涂层在腐蚀防护领域可能存在的研究热点和发展趋势。
高效率双结钙钛矿叠层太阳能电池研究进展
张美荣, 祝曾伟, 郁骁琦, 于同旭, 卢荻, 李顺峰, 周大勇, 杨辉
2023, 40(2): 726-740. doi: 10.13801/j.cnki.fhclxb.20220923.002
摘要:
以钙钛矿电池为顶电池的叠层太阳电池发展迅速,成为太阳能光伏领域的研究热点之一。随着电池结构和制备工艺的优化,叠层电池的光电转换效率快速提升,单片钙钛矿/晶硅叠层电池的效率已达到31.3%。本综述对近年来以宽带隙钙钛矿电池作为顶子电池、晶体硅电池及其他新型中窄带隙电池(钙钛矿电池、有机电池、铜铟镓硒(CIGS)电池)作为底子电池的叠层电池的研究进展进行了系统梳理,总结了叠层电池的顶电池、中间互联层和底电池的材料、结构及光电性能等方面的关键技术及难点,希望能够为进一步提升叠层电池效率提供一些思路。并对未来低成本高效叠层太阳能电池的光学和电学优化需求做出了分析与展望。
树脂高分子复合材料
加成型酚醛改性双马树脂及其复合材料性能
姜伟芳, 王林祥, 郑庆, 袁荞龙, 黄发荣
2023, 40(2): 741-752. doi: 10.13801/j.cnki.fhclxb.20220321.004
摘要:
双马来酰亚胺(BMI)树脂因其优异的性能已在航空航天、电子和其他工业领域获得应用,为满足其在高速飞行器结构件中需求,用加成型酚醛树脂改性BMI体系以改善其热-力学性能。通过Williamson醚化反应合成了炔丙基醚化酚醛树脂(PN)和烯丙基醚化酚醛树脂(AN),采用熔融共混法分别与N, N’-(4, 4’-亚甲基二苯基)双马来酰亚胺(BDM)和2, 2’-二烯丙基双酚A(DABPA)树脂体系(BD)共混,制备了三元热固性树脂:PN改性BD(BDPN)和AN改性BD(BDAN)。研究了两种加成型酚醛树脂改性的BD树脂体系的加工工艺性和固化行为的变化,并对改性前后固化树脂及其复合材料的热、力学性能进行了研究。结果表明:共混树脂体系都在极性溶剂中有好的溶解性,加工窗口都有50℃以上。BDPN和BDAN固化反应只有一个放热峰,最高放热峰值温度比BD树脂低。用FTIR跟踪验证了BD、BDPN和BDAN树脂体系发生的Ene、Diels-Alder、Claisen重排和炔基与马来酰亚胺环的聚合反应。PN热氧稳定性好,改性的BDPN固化树脂空气中质量损失5wt%的温度(Td5)高于400℃,800℃残留率(Yr800℃)由3.7%提升至23.1%。BD、BDPN和BDAN固化物的极限氧指数(LOI)分别为30.2%、32.5%和31.0%,都属难燃材料。BDPN和BDAN树脂浇铸体冲击强度和弯曲模量分别提高了19%和30%,但弯曲强度都因交联密度的下降而有所下降。BDPN和BDAN固化物的吸水率都低于BD树脂,沸水中40 h时BDPN和BDAN分别比BD树脂降低了8.6%和14%。室温下T300碳纤维增强BDAN复合材料(T300CF/BDAN)弯曲强度、弯曲模量和层间剪切强度(ILSS)高于BD基复合材料;200℃下T300CF/BDPN的弯曲强度达575 MPa,保留率高达98.6%。炔丙基醚化酚醛树脂改性双马来酰亚胺树脂体系有望应用于耐200℃的复合材料结构件,为耐热双马来酰亚胺树脂的制备提供新的途径。
基于蛋白质分散的碳纳米管/环氧树脂粘结剂的粘结性能
赵俊捷, 陶文武, 曾利建, 李毅超, 李仁府, 王坤
2023, 40(2): 753-760. doi: 10.13801/j.cnki.fhclxb.20220412.003
摘要:
碳纳米管/环氧树脂因其优良的力学与粘结性能可广泛应用于航空航天等高端领域结构件的胶结连接。然而如何有效降低碳纳米管的团聚性,保证制备工艺的低成本与绿色环保是该纳米粘结剂能够实际应用的关键。为此,本文提出一种基于蛋白质分散的碳纳米管增强环氧树脂粘接剂并对其粘结性能进行了研究。结果表明:经过酸或碱性环境变性处理的大豆分离蛋白能够有效降低碳纳米管的团聚性并显著提高环氧树脂的粘接性能,当碳纳米管质量分数为0.1wt%时,经酸、碱性处理的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为26.6%、26.7%;而当碳纳米管质量分数增加到0.3wt%时,两种处理方法的大豆分离蛋白-碳纳米管/环氧树脂粘结剂的粘结性能增幅分别为10.2%和18.3%,碱处理结果比酸处理提升79%。
连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能
尹洪峰, 薛飞彪, 魏英, 杨顺, 汤云, 袁蝴蝶, 任小虎
2023, 40(2): 761-770. doi: 10.13801/j.cnki.fhclxb.20220330.001
摘要:
低速冲击是聚合物基复合材料在运输和服役过程中常见损伤方式,常造成复合材料结构损伤、性能降低、承载能力下降,影响使用。针对2D纤维增强聚合物基复合材料在冲击载荷作用下抗分层能力差的问题,本文采用熔融挤出结合热压成型法制备了二元和三元尼龙6(PA6)基复合材料,对比研究了连续玻璃纤维(GF)、玻璃微珠(GB)及两者共增强PA6基复合材料的摆锤冲击性能和落锤低速冲击响应。结果表明:(1) GF和GB能显著提高PA6的抗冲击性能,且GF的增强效果明显高于GB;(2) GB增强PA6基复合材料(GB/PA6)的冲击强度随GB加入量增大而先增大后降低,加入量为25wt%时冲击强度最大;冲击载荷作用下,25wt%GB/PA6的耗能机制除了界面脱粘和钉扎效应之外,还发现GB在PA6基体中的滑移耗能新机制;(3) GF和GB共增强PA6复合材料(GB-GF/PA6)中纤维起主要的增强作用,摆锤冲击实验和落锤冲击实验均证明存在协同增强效应;(4) GF和GB共增强的协同增强效应是由于共增强复合材料在冲击载荷作用下,抗Ⅱ型裂纹扩展能力提高,使复合材料抗分层能力得到强化;从而证明在基体中引入适量球形GB是提高2D纤维增强聚合物基复合材料抗低速冲击性能的一条经济和有效途径。
具有Kevlar短纤维界面增韧的碳纤维/铝蜂窝夹芯板冲击后压缩性能
石姗姗, 吕超雨, 吕航宇, 程功, 孙直
2023, 40(2): 771-781. doi: 10.13801/j.cnki.fhclxb.20220305.001
摘要:
碳纤维夹芯板受到冲击载荷后易发生分层损伤,在工程应用中严重影响结构安全。首先对碳纤维/铝蜂窝夹芯板界面进行Kevlar短纤维增韧设计;其次对比研究了Kevlar短纤维界面增韧及未增韧夹芯板的低速冲击行为和冲击后压缩行为,将其冲击后剩余压缩强度、能量吸收及破坏模式进行对比;最后运用数字图像相关技术(DIC)获取增韧及未增韧试件在冲击后压缩过程中的应变云图。结果表明:低速冲击过程中,Kevlar短纤维增韧可以有效提高碳纤维/铝蜂窝夹芯板的冲击损伤阻抗,增韧试件的临界损伤阈值载荷明显高于未增韧试件;相比于未增韧试件,4种冲击能量下增韧试件的冲击后剩余压缩强度(CAI)值分别提高了2.68%、9.24%、4.65%、11.13%,能量吸收分别提高了69.09%、52.88%、55.03%、101.70%;对碳纤维/铝蜂窝夹芯板冲击后压缩过程中的DIC观测,进一步验证了芳纶短纤维对界面的增韧效果,并揭示了增韧界面对结构的增强机制。
穿孔泡沫夹芯复合材料灌注工艺仿真与方案优选
施赫荣, 王继辉, 倪爱清, 冯雨薇, 李想
2023, 40(2): 782-793. doi: 10.13801/j.cnki.fhclxb.20220323.001
摘要:
以穿孔泡沫夹芯复合材料为研究对象,对其真空辅助树脂灌注(VARI)工艺进行了实验研究、仿真分析和方案优选。首先,通过实验测试与数值计算分别得到穿孔夹芯结构织物与芯材孔洞的渗透率;然后,对穿孔夹芯结构灌注过程进行三维仿真模拟,并通过实尺度灌注实验验证了仿真模拟的可靠性;最后,基于验证的仿真模型进行工艺参数优选,拟合得到了灌注时间的预测模型。结果表明:数值仿真与实验值基本吻合,能较准确地模拟穿孔夹芯结构成型时的流动过程和孔隙分布;灌注时间的预测模型可用于指导实际生产;通过优化成型工艺参数可控制树脂的流动行为,达到缩短成型时间和降低构件孔隙率的目的。
碳纤维、玻璃纤维/环氧树脂热解及燃烧特性对比
马俊豪, 贾旭宏, 汤婧, 张晓宇, 代尚沛, 杨晓光
2023, 40(2): 794-803. doi: 10.13801/j.cnki.fhclxb.20220325.002
摘要:
民用飞机内饰壁板材料主要是纤维/树脂复合材料,该类复合材料具有一定的火灾危险性,因此研究其热稳定性和燃烧特性对于飞机防火具有重要意义。采用热重分析仪研究了不同升温速率对碳纤维/环氧树脂和玻璃纤维/环氧树脂两种典型飞机壁板材料热解的影响,并使用Kissinger法得到了分解阶段的表观活化能和指前因子;采用锥形量热仪研究了两种预浸料在不同火灾环境下的燃烧特性,并选取火势蔓延指数(\begin{document}$ {\delta _{{\rm{FGI}}}} $\end{document})、火险潜在指数(\begin{document}$ {\delta _{{\rm{FPI}}}} $\end{document})、放热指数(\begin{document}$ {\delta _{{\rm{THRI}}}} $\end{document})、发烟指数(\begin{document}$ {\delta _{{\rm{TSPI}}}} $\end{document}) 4种评价指标评估其火灾危险性;进而分析两种纤维在树脂复合材料热解、燃烧过程中的影响。结果表明:在空气气氛下,升温速率对两种预浸料的热解影响都较大,碳纤维在556℃以上发生分解,玻璃纤维未发生分解。在热解时玻璃纤维预浸料前两阶段的活化能明显高于碳纤维预浸料,表明玻璃纤维预浸料具有更高的热稳定性。碳纤维预浸料的热释放速率、产烟速率、总产热量、总产烟量均大于玻璃纤维预浸料,随着热辐射强度的增加,两种预浸料这些参数之间的差值都不断变大,碳纤维预浸料的\begin{document}$ {\delta _{{\rm{FGI}}}} $\end{document}\begin{document}$ {\delta _{{\rm{THRI}}}} $\end{document}\begin{document}$ {\delta _{{\rm{TSPI}}}} $\end{document}均大于玻璃纤维预浸料,\begin{document}$ {\delta _{{\rm{FPI}}}} $\end{document}值则相反。分析发现,两种纤维都对复合材料的热解有一定的抑制作用,但玻璃纤维抑制作用更明显,碳纤维/环氧复合材料火灾危险性更大。
基于结构参数的平纹机织复合材料等效弹性性能预测
朱俊, 桂林, 李果, 于梦海, 王继辉
2023, 40(2): 804-813. doi: 10.13801/j.cnki.fhclxb.20220424.004
摘要:
经向纤维束与纬向纤维束纵横交错引起的纤维弯曲(也称为波纹)是平纹机织复合材料固有特征。首先,提出了一种精确描述平纹机织复合材料单胞3D结构特征的数学表达式。其次,基于经典层合板理论和等应力假设,考虑平纹机织复合材料厚度方向非对称引起的弯曲-拉伸耦合效应及单胞结构特征,建立了含结构参数的平纹机织复合材料等效弹性性能多参数解析模型。通过数个典型算例验证了建立的多参数解析模型,结果表明:该多参数解析模型预测值与相关文献中有限元模型预测值、解析模型预测值、实验值等均吻合较好;该多参数解析模型预测值尤其是Z向弹性性能预测值,比文献中解析模型预测值更接近于实验值。在此基础上,进一步探讨了纤维束波纹比(包括纤维束波动方向波纹比与纤维束横截面波纹比)、经向与纬向纤维束构成的预成形体厚度、纤维束中弯曲部分的长度、相邻纤维束之间间距等结构参数对平纹机织复合材料弹性性能影响。该多参数解析模型建模方法为研究纺织复合材料力学性能提供了参考。
功能复合材料
水溶性锆杂化硅树脂浸润剂提高玄武岩纤维的耐热性能
程岩, 王诏田, 罗洪杰, 吴林丽, 陈曦平, 姜昊
2023, 40(2): 814-824. doi: 10.13801/j.cnki.fhclxb.20220426.001
摘要:
现有玄武岩纤维制成的高温烟气滤袋工作温度为280℃,难以在300℃甚至更高的温度下长期工作。为了提高玄武岩纤维的耐热性能,本文合成了一种水溶性锆杂化硅树脂浸润剂,并用于玄武岩纤维表面改性。用FTIR、TG-DSC、SEM、AFM、DCA及拉伸实验对锆杂化硅树脂及改性纤维进行了微观结构和性能表征。结果表明:锆杂化硅树脂的初始热分解温度为323~360℃;浸润后的玄武岩纤维表面包裹着一层致密、均匀的硅树脂膜,这层膜增大了纤维表面的粗糙度和表面积,提高了纤维的表面能,改变了纤维的表面结构,修复了纤维的表面微缺陷;力学测试表明:浸润后的纤维在300℃热处理2 h后,最优断裂强力值为376.0 N,断裂伸长率为2.647%,优于未被浸润纤维(287.8 N、1.932%)的相关性能。因此,锆杂化硅树脂浸润剂可显著提高玄武岩纤维的耐热性能。
混合溶剂分散法制备耐高温、高导热六方氮化硼/半芳香聚酰胺12T复合材料及其性能
陈晓杰, 马舸, 孟慧迪, 崔喆, 付鹏, 赵蔚, 庞新厂, 赵清香, 刘民英, 张晓朦
2023, 40(2): 825-835. doi: 10.13801/j.cnki.fhclxb.20220321.003
摘要:
制备兼具优异耐高温性能和导热性能的聚合物基复合材料对于电子元器件的封装保护、高效散热和稳定成型至关重要。本文通过混合溶剂分散法(MSD)制备了六方氮化硼(BN)/半芳香聚酰胺12T (PA12T)复合材料,并对复合材料的微观结构、导热、耐高温、介电和力学性能进行了表征。结果表明:混合溶剂分散法可以有效实现BN和PA12T粉末的均匀悬浮,并可协同真空辅助自组装法与真空热压法构筑具有均一分散和取向结构的复合材料。研究表明,当BN/PA12T复合材料中的BN含量为40wt%时,混合溶剂分散法制备的样品的平面导热率可以达到2.73 W/(m·K),是机械混合法(MM)制备的样品(1.59 W/(m·K))的1.72倍,同时其具有优异的力学性能、低介电常数(3.6)、介电损耗(0.016)和显著的耐高温性能(维卡软化点超过250℃且初始分解温度可达446℃)。综上所述,混合溶剂分散法制备的BN/PA12T复合材料在电子封装及热管理领域中具有广阔的应用前景。
载Ag/Cu纳米粒子多孔聚丙烯腈复合纤维膜的制备及其抑菌性
徐鹏, 汪杨, 王莎莎, 戴伟, 陈难难, 李群
2023, 40(2): 836-843. doi: 10.13801/j.cnki.fhclxb.20220419.005
摘要:
金属纳米粒子因其独特的物理化学性能,在催化、抑菌、水污染处理和生物医学等领域表现出巨大的应用前景。但是金属纳米粒子在制备和使用过程中容易发生团聚而影响其性能。因此,提高金属纳米粒子的稳定性,对提升其应用性能具有重大意义。本文在以聚丙烯腈(PAN)为基体,聚乙烯吡咯烷酮(PVP)为致孔剂,基于静电纺丝技术制得多孔聚丙烯腈纳米纤维(PPAN NFs)的基础上,通过浸渍沉积法分别制备出负载银纳米粒子(Ag NPs)复合纳米纤维(Ag-PPAN NFs)和负载铜纳米粒子(Cu NPs)复合纳米纤维(Cu-PPAN NFs)。在利用FESEM、EDS、XRD等方法对制备纤维膜的形貌和结构进行表征的基础上,通过抑菌圈法和FESEM观察经复合纳米纤维处理前后的细菌形貌来研究Ag-PPAN NFs和Cu-PPAN NFs对大肠杆菌、金黄色葡萄球菌和白色念球菌的抑菌性能。研究结果发现:PPAN NFs可有效解决Ag NPs和Cu NPs在制备和使用过程中易于聚集的问题,制得的复合纳米纤维对大肠杆菌、金黄色葡萄球菌和白色念球菌具有一定的抗菌活性,可成为一种新型的抗菌纤维材料。
过渡金属和磷共掺杂多孔碳作为氧气还原电催化剂
万泽远, 李桂林, 吴娇
2023, 40(2): 844-851. doi: 10.13801/j.cnki.fhclxb.20220228.002
摘要:
碳基材料作为非贵金属催化剂具有导电性能高、稳定性能好、价格低廉、环境友好等优点,在燃料电池阴极催化剂领域中引起了广泛的关注,尤其是过渡金属和异原子共掺杂能够显著提高碳材料的氧气还原催化活性。本文采用聚醚(F127)作为软模版,苯酚、甲醛作为碳源,四苯基溴化膦作为磷源,硝酸盐作为过渡金属来源,通过挥发溶剂自组装及高温煅烧过程制备了过渡金属(Co、Fe、Ni、Mn)和磷(P)共掺杂多孔碳材料(TM-P-C)。通过旋转环盘电极研究了TM-P-C在0.1 mol/L KOH电解液中的氧气还原电催化性能。研究结果表明:TM-P-C催化剂具有较高的氧化还原反应(ORR)电催化性能,其ORR活性为P-Co-C>P-Ni-C>P-Fe-C>P-Mn-C,其中P-Co-C的ORR电催化性能可与商业20wt%Pt/C催化剂相媲美,其电流密度与20wt%Pt/C催化剂的电流密度相当,与20wt%Pt/C仅存在66 mV的半波电位差,表现为ORR的4e转移途径。制备的TM-P-C催化剂所具有的较高氧气还原电催化活性主要来自于过渡金属和P原子之间的协同作用。此外,TM-P-C催化剂表现出优异的长期稳定性和抗甲醇毒化性能,优于商业化20wt%Pt/C催化剂。
气相二氧化硅的异氰酸酯改性及其对浇注型聚氨酯弹性体力学性能的影响
周鑫, 易玉华
2023, 40(2): 852-859. doi: 10.13801/j.cnki.fhclxb.20220303.002
摘要:
为了改善气相二氧化硅(FS)/浇注型聚氨酯(PU)体系成型流动性,在制备预聚体的过程中,采用2, 4-甲苯二异氰酸酯(TDI)进行改性获得异氰酸酯改性的二氧化硅(NCO@FS),通过原位聚合法制备了NCO@FS/PU弹性体复合材料。采用FTIR、XPS及动态接触角对NCO@FS及FS进行了表征。结果表明:FS的表面羟基与TDI的—NCO基团发生反应生成了氨酯基(—NHCOO),改善了FS与PU间的界面相容性及界面结合。复合材料中NCO@FS质量分数为1.5wt%时,NCO@FS/PU复合材料的拉伸和撕裂强度分别为57 MPa和110.5 kN/m,比纯浇注型PU分别提高了31.6%和23.6%;玻璃化转变温度由3.4℃下降到−11.2℃,损耗因子tanδ由0.59下降到0.46。异氰酸酯改性FS适合制备FS增强浇注型聚氨酯复合材料。
MWCNT/PEDOT复合材料的微观结构和热电性能
李重阳, 宋小勇, 陈莉莉, 陶颖, 陈志权, 赵宾
2023, 40(2): 860-871. doi: 10.13801/j.cnki.fhclxb.20220307.002
摘要:
热电转换技术能将大量的废弃热能转换为电能以重新利用,是一种绿色能源转换技术,可以有效提高能源利用效率,缓解煤炭、石油等主要化石类能源过度开采、使用带来的能源危机及环境污染问题,因此受到科研工作者的广泛关注,是近年来的研究热点。基于此,本文以电子型导电高聚物中机能较优的聚(3, 4-乙烯二氧噻吩)(PEDOT)作为研究主体,通过化学原位氧化聚合将多壁碳纳米管(MWCNT)复合到载体中得到MWCNT/PEDOT复合材料。利用XRD、拉曼、TEM及正电子湮没寿命(PAL)等方法对MWCNT/PEDOT复合材料的形貌和微观结构进行了系统研究,研究表明:当MWCNT含量高于24.9wt%时,复合材料中出现MWCNT团聚现象,其分散性变差。同时,MWCNT/PEDOT复合材料的热电性能测试结果显示,未掺杂PEDOT的电导率仅为7.5 S·m−1,而MWCNT含量为30.1wt%时,该复合材料的电导率高达566.59 S·m−1,提高近76倍。同时,30.1wt%MWCNT/PEDOT的功率因子(814.3×10−4 μW·(m·K2)−1)相对于未掺杂PEDOT(14.5×10−4 μW·(m·K2)−1)提高约56倍,这主要是由于PEDOT分子链与MWCNT掺杂物间π-π相互作用及MWCNT的高导电性。随着MWCNT含量的增加,PAL测试结果中第一寿命成分τ1(即正电子在材料中湮没的第一寿命成分)的下降证实了该复合材料中MWCNT与PEDOT间界面变小或者界面间相互作用减弱,导致其热导率相对于未掺杂PEDOT有一定的上升,但远远低于功率因子的升高。最终,该MWCNT/PEDOT复合材料的热电优值(即热电材料ZT值)由0.015×10−4升至0.45×10−4,增加了约30倍。结果表明:掺杂的高电导率MWCNT能够极大地提高PEDOT类电子型导电聚合物的热电性能。
纳米SiO2@超支化PDMS复合超疏水涂层的制备与性能调控
刘静, 雷西萍, 于婷, 陈浩男, 樊凯
2023, 40(2): 872-883. doi: 10.13801/j.cnki.fhclxb.20220331.002
摘要:
超疏水涂层在实际应用中受化学腐蚀、刮擦磨损等外界环境的影响,易造成涂层老化、开裂甚至脱落,造成涂层失效。因此,针对这一问题,设计出具备耐候性的自修复超疏水表面:以超支化聚二甲基硅氧烷为柔性基底和低表面能物质,引入纳米二氧化硅构筑表面粗糙结构,制备超疏水涂层。当SiO2粒径为50 nm、固含量为30wt%时,得到了接触角为154.87°的超疏水涂层。经过5次胶带剥离试验,涂层表现出良好的机械稳定性。经历10次温差循环试验和24 h紫外光照射后,涂层表面接触角仍大于150°,表明涂层具有良好的耐候性。涂层经过80℃、2 h的热处理可修复划痕,表明该涂层具有一定的自修复功能。同时,Tafel及Nyquist测试结果表明,对基底进行超疏水处理可显著提高防腐性能,并且该涂层具有明显的自清洁效果。综上所述,本文所制备的纳米SiO2@超支化聚二甲基硅氧烷(PDMS)复合超疏水涂层具有自修复功能,为自修复超疏水涂层的开发提供了新的研究策略。
仿生FeS复合材料的制备及其对Cr(VI)的吸附性能
程爱华, 常娟
2023, 40(2): 884-892. doi: 10.13801/j.cnki.fhclxb.20220402.001
摘要:
纳米FeS比表面积大且还原性强,对Cr(VI)吸附性能优异,但不稳定、易团聚,为解决这一问题,本文以油菜花粉为生物模板,通过共沉淀-焙烧法制得仿生FeS复合材料(bioFeS)。通过SEM、XRD及XPS等方法对bioFeS复合材料的表面微观形态和结构进行了表征。以Cr(VI)为目标污染物,分别考察了吸附剂用量、反应时间、反应温度、初始Cr(VI)浓度和pH对bioFeS复合材料吸附Cr(VI)性能的影响,探究了反应机制。结果表明:油菜花粉生物模板成功分散了FeS,制得的bioFeS复合材料比表面积大,在反应时间为120 min、pH值为1、吸附剂投加量为0.2 g·L−1、反应温度为25℃的条件下,bioFeS复合材料对Cr(VI)的吸附量可达88.95 mg·g−1;该吸附过程符合准二级动力学和Langmuir等温吸附模型;共存离子NO3和SO42−会抑制Cr(VI)的去除。结合吸附动力学、热力学及XPS表面元素分析可知bioFeS复合材料除铬机制主要是吸附及化学还原作用。bioFeS复合材料处理含铬废水具有广阔的应用前景。
NiFe-植酸复合物的室温制备及其全解水电催化性能
陈莹玉, 刘怡君, 陈晨欣, 汪庆祥, 高凤, 孙伟
2023, 40(2): 893-903. doi: 10.13801/j.cnki.fhclxb.20220314.002
摘要:
制备高稳定性、高活性双功能催化剂用于全解水制氢是氢能源大规模商业化应用的重要环节之一。本文以植酸(PA)、六水合氯化铁(FeCl3·6H2O)和六水合氯化镍(NiCl2·6H2O)为原料,采用两步室温浸渍法在泡沫镍(NF)上制备了片状无定形植酸-镍铁双金属复合材料(NiFe-PA)。采用线性扫描伏安法(LSV)考察了NiFe-PA修饰NF电极(NiFe-PA/NF)在碱性条件(1.0 mol/L KOH)的电解水催化性能。实验结果表明:由于NiFe双金属之间的协同效应,NiFe-PA/NF作为双功能催化剂显示出优越的析氧和析氢性能。NiFe-PA/NF电极在50 mA·cm−2电流密度下析氧反应的过电位仅需220 mV;在10 mA·cm−2电流密度下的析氢反应的过电位为135 mV。将NiFe-PA/NF组装成双电极系统用于全解水,达到10 mA·cm−2电流密度的电池电压仅需1.61 V,低于贵金属催化剂体系RuO2/NF||Pt-C/NF(1.64 V),同时,可满足2 V太阳能电池板在太阳光照条件下的驱动产氢。另外,基于PA金属配合物的高稳定性和抗腐蚀性能,NiFe-PA/NF在100 mA·cm−2电流密度下的析氧反应和析氢反应催化稳定性可至少分别维持175 h和75 h,表明NiFe-PA/NF在高电流密度下具有高催化稳定性。
g-C3N4/POPs异质结制备及其可见光催化性能
郭佳允, 傅炀杰, 张柯杰, 姬云, 杨娟, 王齐
2023, 40(2): 904-910. doi: 10.13801/j.cnki.fhclxb.20220325.001
摘要:
光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常数分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料5次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。
石墨烯增强FeSiAl-MoS2/PLA复合材料吸波性能
叶喜葱, 杨超, 欧阳宾, 高琦, 吴海华, 何恩义, 叶永盛
2023, 40(2): 911-928. doi: 10.13801/j.cnki.fhclxb.20220415.004
摘要:
多元材料复合是制备轻质、宽频和强吸收吸波材料的有效方法。以聚乳酸(PLA)为基体,FeSiAl、MoS2和石墨烯(GN)为填料,通过球磨和熔融挤出两步法制备了可用于熔融沉积成形(FDM)的FeSiAl-MoS2-GN/PLA复合材料。采用XRD、拉曼光谱、SEM和矢量网络分析仪分别对复合材料的物相结构、微观形貌和电磁特性进行了表征,并研究了石墨烯含量对复合材料吸波性能的影响。研究表明:石墨烯、FeSiAl和MoS2随机分散在PLA基体中,形成了复杂的导电网络;多元材料复合构筑了丰富的介电/磁异质界面,有利于促进界面极化;当石墨烯含量增加时,复合材料的吸波性能随之增强,当石墨烯含量为5wt%时,复合材料的吸波性能最佳,在厚度为1.7 mm时最小反射损耗为−27.90 dB,在厚度为1.9 mm时有效吸收带宽为4.96 GHz(12.64~17.60 GHz)。其优异的吸波性能归因于良好的阻抗匹配及介电损耗和磁损耗之间的协同作用。
表面疏水修饰增强改性硅藻土调湿性能及其对聚氨酯膜透湿性的影响
侯雪艳, 文华, 赵海涛, 泥立豪, 张玉琦, 王记江
2023, 40(2): 929-939. doi: 10.13801/j.cnki.fhclxb.20220414.001
摘要:
水性聚氨酯(PU)是一种环保绿色的涂层材料,广泛应用于皮革、纺织、建筑涂层等领域。作为皮革、纺织涂层时,聚氨酯的透湿性决定服装的穿着舒适性,而常规水性聚氨酯的透湿性较差,需要对其进行改性获得透湿性优异的涂层。本文采用CaCl2和十七氟癸基三甲氧基硅烷(FAS-17)对硅藻土进行改性,研究了改性条件对硅藻土结构和性能的影响,将调湿性能较好的改性硅藻土(FAS-17-CaCl2-D)与PU复合,研究复合膜的透湿性。结果表明:采用质量浓度为30wt%CaCl2和0.8wt%FAS-17改性的硅藻土综合性能最好,改性后硅藻土的比表面积、孔隙结构增大,调湿性能提高,FAS-17表面疏水修饰进一步强化了其调湿作用。将性能最好的FAS-17-CaCl2-D与PU复合后,FAS-17-CaCl2-D/PU透湿性随着FAS-17-CaCl2-D用量的增加先增大后减小,复合膜的疏水性提高。1%FAS-17-CaCl2-D与PU复合制备的复合膜透湿率最大,较纯PU膜提高了16.3%,SEM-EDS显示该复合膜表面和截面有Si、Ca和F等FAS-17-CaCl2-D的特征元素,PU与FAS-17-CaCl2-D相界面出现了孔隙,为水蒸气的透过提供通道,从而使透湿性增强。本文制备的透湿聚氨酯材料,有望用于纺织品和皮革涂层,改善湿热舒适性。
ZIF-67修饰WO3纳米片的制备及其气敏性能
桂阳海, 钱琳琳, 田宽, 郭会师, 张景浩, 万程涛, 杨晓艳
2023, 40(2): 940-949. doi: 10.13801/j.cnki.fhclxb.20220325.003
摘要:
金属氧化物半导体气敏传感器在有毒有害气体检测领域逐渐表现出巨大的应用前景,但是金属氧化物半导体传感器通常在检测时受环境湿度影响较大,这极大地限制了其应用。本文采用水热法成功在陶瓷管表面原位生长WO3纳米片,并以此为基底,在其表面生长ZIF-67多孔材料,通过调控W和Co的比例制备了不同比例的ZIF-67/WO3复合材料,利用XRD、SEM、FTIR和比表面积测试仪(BET)等方法对所制备的材料进行物相和形貌表征。针对其不同比例的复合材料的气敏性能进行了研究。结果表明:W∶Co摩尔比为 1∶1的ZIF-67/WO3(1∶1)复合材料性能最好,在220℃对三乙胺表现出优异的选择性,对体积分数为100×10−6的三乙胺的响应值可达140.34,响应和恢复时间分别为9 s和7 s。研究了空气相对湿度(RH)对ZIF-67/WO3(1∶1)传感器的影响,结果表明,在高达75%RH环境下该材料仍能保持较好的响应值,相对于纯WO3气敏材料具有较好的抗湿性能。
ZIF-67@PDA/含氟聚酰亚胺混合基质膜的制备及其气体分离性能
李金岭, 赖石清, 刘婵娟, 吴伟莲, 倪靖, 黄孝华, 周立
2023, 40(2): 950-958. doi: 10.13801/j.cnki.fhclxb.20220406.001
摘要:
金属有机框架材料(MOF)/聚合物混合基质膜(MMMs)通过结合MOF的分子筛效应和聚合物基质成本较低、加工性能好、机械强度高的特征,使其在气体分离领域展现出巨大的应用前景。然而由于MOF在聚合物基体中存在分散性差问题,极大地限制了其应用。采用溶剂热法合成金属框架材料ZIF-67,并通过溶液氧化法在ZIF-67表面修饰聚多巴胺(PDA)层制备ZIF-67@PDA纳米多孔材料。以4, 4'-二氨基二苯醚-2, 2'-双(3, 4-二羧酸)六氟丙烷二酐(ODA-6 FDA)型含氟聚酰亚胺(FPI)为基体、ZIF-67和ZIF-67@PDA为填料,制备不同质量分数的ZIF-67/FPI和ZIF-67@PDA/FPI。通过FTIR、WAXD、TGA、SEM、比表面和孔径分布分析仪、气体渗透仪等测试对MMMs的结构和性能进行表征并测试了N2、O2、CO2、He 4种气体的渗透性。结果表明:经聚多巴胺修饰后的纳米微孔材料ZIF-67在聚合物基体中能均匀分散并为气体分子的通过提供快速通道,且表现出良好的热稳定性。ZIF-67@PDA对CO2具有良好的亲和性,这有利于提高CO2/N2选择性。当ZIF-67@PDA负载量为10wt%时,MMMs的CO2渗透性和CO2/N2选择性协同增加,和纯FPI膜相比分别增加了131%、50%,MMMs表现出良好的气体分离性能。
AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能
刘奋军, 宁祥, 白艳霞, 申志康, 陈海燕
2023, 40(2): 959-969. doi: 10.13801/j.cnki.fhclxb.20220410.002
摘要:
为有效改善AZ31镁合金表面的腐蚀性能,本文采用激光熔覆技术在AZ31镁合金表面成功制备了无缺陷的Al-TiC复合涂层。研究了不同成分含量的Al-TiC复合涂层的相组成、微观组织和耐腐蚀性能的影响。结果表明:在Al-TiC复合涂层内形成了大量的Al12Mg17、Mg2Al3和TiC相。复合涂层内微观组织呈现出连续网络状分布特征。随着Al-TiC混合粉末中Al含量的减小,复合涂层中Al12Mg17、Mg2Al3和TiC相的含量呈递增趋势,网络状分布的微观组织结构变得更加均匀连续。复合涂层与AZ31基体之间形成了良好的冶金结合界面。激光熔覆制备的Al-TiC复合涂层耐腐蚀性能较AZ31基体显著提升。自腐蚀电位由基体的−1.563 V提升至−1.144 V,自腐蚀电流由基体的1.55×10−4 A减小至2.63×10−6 A。
网格式柔性应变传感器的制备及应用
许利强, 孙权, 詹政, 杨润洪, 唐智杰, 鹿业波
2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002
摘要:
鉴于柔性应变传感器在人体运动监测、健康监测等领域的广泛应用,设计出兼具高灵敏度和大应变范围的柔性应变传感器具有重要的意义。本文基于Ecoflex-石墨烯复合材料,通过模板法制备了四边形和六边形网格式柔性应变传感器。通过对比两种不同网格结构传感器的应变范围与拉伸断裂极限,发现六边形网格柔性应变传感器的综合性能更优异,并在80%应变条件下进行拉伸/释放疲劳寿命检测,此传感器表现出良好的可靠性,同时该传感器在手肘关节运动和人体不同呼吸状况监测方面表现良好。将六边形网格柔性应变传感器组合构建多通道检测系统,实现了多种手势识别,这在人工智能和运动识别领域具有广阔的市场应用前景。
土木建筑复合材料
CFRP筋增强ECC梁弯曲性能试验研究
周甲佳, 温金鑫, 景川, 赵军
2023, 40(2): 978-989. doi: 10.13801/j.cnki.fhclxb.20220324.003
摘要:
为研究碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)筋/超高韧性纤维增强水泥基复合材料(Engineered cementitious composite,ECC)梁的抗弯性能,对3根CFRP筋/ECC梁、1根玻璃纤维增强树脂复合材料(Glass fiber reinforced polymer,GFRP)筋/梁和1根CFRP筋混凝土梁进行了四点弯曲试验,分析了配筋率、纤维增强树脂复合材料(Fiber reinforced polymer,FRP)筋类型和基体类型对梁抗弯性能的影响。试验结果表明:CFRP筋/ECC梁与GFRP筋/ECC梁和CFRP筋混凝土梁类似,均经历了弹性阶段、带裂缝工作阶段和破坏阶段;配筋率对CFRP筋/ECC梁的受弯性能影响较大。随着配筋率的增加,CFRP筋/ECC梁的承载能力不断提高,延性性能逐渐减弱;ECC材料优异的应变硬化能力和受压延性,使得CFRP筋/ECC梁的极限承载能力和变形能力均优于CFRP筋混凝土梁;由于ECC材料多裂缝开裂能力,CFRP筋/ECC梁开裂后,纵筋表面应变分布比CFRP筋混凝土梁更均匀; 由于聚乙烯醇(Polyvinyl alcohol,PVA)纤维的桥联作用,CFRP筋/ECC梁破坏时,其表面出现了大量的细密裂缝,且能保持较好的完整性和自复位能力;正常使用阶段,CFRP筋/ECC梁的最大弯曲裂缝宽度均小于CFRP筋混凝土梁。最后,根据试验结果,建立了基于等效应力图的CFRP筋/ECC梁弯曲承载力简化计算模型,确定模型中的相关系数。由简化模型计算的极限承载力与试验结果具有较好的相关性。
CFRP网格-聚合物水泥砂浆加固RC梁抗剪承载力计算方法
王博, 王媛媛, 王征鹏, 张军雷, 王天松
2023, 40(2): 990-1003. doi: 10.13801/j.cnki.fhclxb.20220419.004
摘要:
为揭示碳纤维增强树脂复合材料(Carbon fiber reinforced polymer,CFRP)网格-聚合物水泥砂浆(Polymer cement mortar,PCM)抗剪加固钢筋混凝土(RC)梁的受剪机制并建立其承载力计算方法,对RC梁进行了四点弯曲试验和有限元模拟,重点分析了CFRP网格对RC加固梁的抗剪贡献,建立了基于改进的桁架拱模型的抗剪承载力计算方法。结果表明:RC梁侧粘贴CFRP网格-PCM加固层不仅可以抑制斜裂缝的发展,而且还提高了抗剪承载力;CFRP网格与钢筋之间具有良好的协同工作性能,其中,横向CFRP网格筋分担了约16%的箍筋应变;回归分析指出纵向CFRP网格筋的应变约为横向CFRP网格筋应变的0.29倍;综合考虑纵向CFRP网格的销栓作用和横向CFRP网格分担的箍筋应变,提出了基于改进桁架-拱模型的承载力计算方法,具有更好的适用性和准确性,能够满足设计要求。
碳/芳纶混杂纤维增强波纹夹芯结构低速冲击性能
习涛, 倪爱清, 张笑梅, 李想, 王继辉
2023, 40(2): 1004-1014. doi: 10.13801/j.cnki.fhclxb.20220317.001
摘要:
采用碳纤维和芳纶纤维增强复合材料对波纹夹芯结构的面板进行层间混杂铺层设计,通过真空辅助树脂灌注(VARI)成型工艺制备混杂波纹夹芯结构。在60 J、80 J和100 J三种不同冲击能量下,研究了面板混杂铺层方式对波纹夹芯结构低速冲击性能及冲击后压缩强度的影响,并利用超声C扫和工业CT断层成像两种无损检测技术对波纹夹芯结构的冲击损伤机制进行了分析。结果表明:冲击能量较低时,波纹夹芯结构的吸收能量基本不受面板的混杂铺层方式影响,而凹坑深度随表层碳纤维层数增加而减少。冲击能量较高时,面板为分层式混杂(碳/芳纶纤维单层交替铺层)的波纹夹芯结构的抗冲击性能最好,纤维断裂损伤和层间分层主要发生在试样表层,但损伤面积较大;面板为夹层式混杂(以碳纤维为蒙皮、芳纶纤维为芯材)的波纹夹芯结构具有较高的吸收能量,整个上面板的纤维都发生了断裂破坏,但损伤面积较小。碳/芳纶混杂波纹夹芯结构的面板采用分层式和夹层式的混杂铺层设计时,具有较高的冲击后压缩强度。
持压荷载与干湿循环作用下再生混凝土氯盐侵蚀行为
鲍玖文, 王云伟, 牟新宇, 张鹏, 于子浩, 赵铁军
2023, 40(2): 1015-1024. doi: 10.13801/j.cnki.fhclxb.20220321.002
摘要:
采用干湿比为3∶1和质量分数为5wt%的NaCl溶液,开展了持压荷载与干湿循环共同作用下不同再生粗骨料取代率(r=0%、30%、50%、100%)混凝土的氯离子传输试验,分析了持压应力水平(λc=0.1、0.3、0.5)对氯盐侵蚀性能的影响。基于非饱和混凝土的氯离子对流-扩散模型,提出了考虑应力水平和再生骨料取代率影响的水分和氯离子扩散系数模型,并验证了该模型的有效性。结果表明:相同再生粗骨料取代率的混凝土内自由氯离子含量、氯离子扩散系数和表面氯离子浓度均随应力水平的增加呈先减小后增大的趋势,同一应力水平下与再生粗骨料取代率呈正相关,再生粗骨料取代率为100%的试件承受0.1fc、0.3fc、0.5fc (fc为再生混凝土(RAC)立方体抗压强度值)应力作用的氯离子扩散系数分别是无应力状态的0.97、0.88和1.48倍;所建立的持压荷载与干湿循环作用下RAC氯离子传输模型,为再生混凝土耐久性分析提供理论依据。
新型磁性环氧树脂水泥浆液硬化机制与孔径分析
刘杰, 李政, 黎照, 孙涛, 程其芬, 秦仕福
2023, 40(2): 1025-1036. doi: 10.13801/j.cnki.fhclxb.20220324.002
摘要:
常规砂浆无法满足反倾斜裂隙和缺陷的工程填充要求,在注浆压力驱使下会引入大量气泡,浆液密实度得不到保障。针对此,研发了一种新型磁性环氧树脂水泥(MEC)浆液,可实现反重力式注浆锚固、导向式流动、增大浆体密实度、浆液黏度实时调控。采用SEM、XRD、N2吸附测试方法,对MEC浆液在不同磁场作用下的微观形貌、水化产物和孔径进行了分析。结果表明:MEC浆液主要分为环氧树脂固化、水泥水化两个硬化过程。固化产物对水化产物进行包裹,与钙矾石(Ettringite,AFt)和Ca(OH)2中的Ca2+发生离子作用,形成络合物包裹磁粉,对浆液中存在的微小孔隙进行填充;磁场强度由400 GS增大到6000 GS时,孔隙面积减小率达77.6%,孔隙数量减小率达76.8%。N2吸附试验表明:附加磁场会降低介孔和大孔的数量,显著减小比表面积,磁性浆液符合H4型滞回线,主要表现为墨水瓶孔;基于磁偶极子理论,数值模拟了磁颗粒受力,分析结果表明在磁场强度为2000~6000 GS可高效减小孔隙面积。
生物纳米复合材料
污泥基生物炭负载纳米零价铁去除Cr(VI)的性能与机制
曾涛涛, 农海杜, 沙海超, 陈胜兵, 张晓玲, 刘金香
2023, 40(2): 1037-1049. doi: 10.13801/j.cnki.fhclxb.20220324.001
摘要:
针对电镀、冶金、印染等行业产生的含铬废水所导致的环境污染难题,以城市污泥热解获得的污泥基生物炭(SB)为载体,制备了污泥基生物炭负载纳米零价铁(nZVI-SB)材料用于去除水中的Cr(VI),探究了铁炭质量比、初始pH值、投加量、温度等因素对去除Cr(VI)的影响。通过SEM-EDS、XRD和XPS等手段对nZVI-SB去除Cr(VI)的机制进行分析。结果表明:nZVI-SB对Cr(VI)废水具有较好的去除能力。在投加量0.5 g/L、初始pH=2、温度40℃条件下, Fe与SB质量比为1∶1的nZVI-SB(1∶1)对Cr(VI)吸附量最大为150.60 mg/g。Cr(VI)去除过程可通过Langmuir吸附等温式与准二级动力学方程进行拟合。nZVI-SB对Cr(VI)去除机制主要包括吸附、还原和共沉淀。本文表明污泥基生物炭与纳米零价铁可以协同发挥除Cr(VI)作用。
新型胶原-腐植酸钠复合水凝胶的研制与分析
田振华, 何静瑄, 王颖
2023, 40(2): 1050-1059. doi: 10.13801/j.cnki.fhclxb.20220321.005
摘要:
水凝胶具有弹性高、含水量高,冷效应、保湿性强、形状多变等优点,是医用敷料的主要材料之一。将具有优良生物相容性、促细胞增殖功能的胶原(COL)与具有止血、消炎等作用的腐植酸钠(NaHA)按不同比例(COL∶NaHA)共混并采用自组装方式制备了一种新型胶原-腐植酸钠复合水凝胶,并考察两者间的相互作用及复合水凝胶的结构与性能,以期应用于医用敷料行业。NaHA不改变胶原的三股螺旋结构且两者之间存在氢键与静电作用。当COL∶NaHA ≥ 4∶6时,两者间的静电结合被NaCl所屏蔽,因此体系相容性较好;然而继续增加NaHA会引起聚沉现象。当COL∶NaHA=4∶6时,两者结合率最高,达到93.2%且相容性较好,复合水凝胶的纤维具有明显的D-周期且各方面性能最佳。NaHA的释放较缓慢,24 h后仍有约80%保留在水凝胶中;热稳定性较纯胶原提升了34.9℃;储能模量和损耗模量分别为31.89 Pa和3.99 Pa。此外,随着NaHA的加入,冻干复合水凝胶的孔径缩小、孔隙分布更加均匀;复合膜的亲水性明显提升。
高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶制备及其在柔性传感中的应用
胡魁, 王映月, 王昊昱, 赵志鹏, 刘凯, 黄六莲, 陈礼辉
2023, 40(2): 1060-1070. doi: 10.13801/j.cnki.fhclxb.20220322.003
摘要:
纳米纤维素具有大长径比、较高的弹性模量与比表面积及丰富的表面官能团,是一种优良的纳米增强材料。首先以纳米纤维素(CNFs)为分散介质辅助分散MXene纳米片层,制备CNF-MXene纳米复合物,并通过FTIR与XPS分析CNFs与MXene的相互作用。以此复合物为增强填料,聚乙烯醇(PVA)为基底,制备CNF-MXene/PVA复合水凝胶,进一步通过KOH溶液处理,提高复合水凝胶的力学性能,并赋予复合水凝胶优异的离子导电性。该复合水凝胶表现出优异的力学性能,其拉伸强度与断裂伸长率分别达到255.9 kPa与1098.2%,还具有高电导率(2.38 S/m)、一定的抗冻性能与灵敏的应变/压力响应性。基于该复合水凝胶组装的应变/压力柔性传感器,由于具有极低的检测极限质量(100 mg)与极快的响应时间(225 ms),可以监控脉搏跳动与喉咙发声微小震动引起的压力变化。因此,该复合水凝胶基柔性传感器非常有希望应用于未来新一代可穿戴电子、人机交互等领域。
锰氮共掺杂稻壳生物炭活化过二硫酸盐降解酸性橙
黄仕元, 林森焕, 董雯, 王国华, 吴兴良, 袁瀚钦
2023, 40(2): 1071-1084. doi: 10.13801/j.cnki.fhclxb.20220328.001
摘要:
为了更好地处理水环境中的偶氮染料(酸性橙,AO7)污染问题,以稻壳、尿素和锰盐为原料,通过热解法制备Mn、N共掺杂生物炭复合材料(Mn-N-BC),活化过二硫酸盐(PDS)降解酸性橙(AO7)染料废水。考察了AO7初始浓度、PDS浓度、催化剂投加量、初始pH值等因素对AO7去除率的影响。结果显示:Mn-N-BC/PDS体系对AO7染料具有较高的去除率,在30 min内可达为98.6%,其表观速率常数kobs为0.125 min−1;并且对水环境中的无机阴离子表现出较高的抗性。在3次循环利用后,AO7的去除率仍在75%左右,表明Mn-N-BC对有机污染物的去除具有较高的可重复利用性和稳定性。自由基淬灭研究、XPS分析表明:Mn-N-BC/PDS体系中AO7的降解机制包括自由基途径(•OH、SO4•)和非自由基途径(O2•、1O2和电子转移),其中非自由基途径为主要作用。
基于3D打印的木材细胞壁仿生设计
秦施埼, 任泽春, 王辰希, 寇允, 刘昭言, 许民
2023, 40(2): 1085-1095. doi: 10.13801/j.cnki.fhclxb.20220414.004
摘要:
木材中起骨架作用的纤维素是以不同螺旋结构的微纤丝形式存在于细胞壁中。本文通过将3D打印技术与仿真模拟相结合,研究木材细胞壁的纤维螺旋增强结构。使用微晶纤维素(MCC)/聚乳酸(PLA)复合材料,在对MCC/PLA复合材料各项性能进行测试的基础上,借助3D打印技术构建木材细胞壁螺旋结构,通过改变纤维取向和纤维孔状结构编程合成结构的力学功能。有限元仿真则用于强调纤维在刚性单元之间的载荷传递机制中的关键作用。结果表明:通过编程纤维的取向和结构可以宏观调控结构的性能,其中纤维的交叉结构作为一种优化设计可以用于提高结构成型制品的力学性能。这些结构可以被组装成更大的系统,用于构建具有优化特定功能的模块化复合材料;在异质结构设计和新型复合材料制造领域中均具有潜在的应用价值。
多壁碳纳米管-细菌纤维素复合薄膜的制备及其力学性能
田萃钰, 陆赵情, 宁逗逗, 赵瑞霞, 耿博
2023, 40(2): 1096-1104. doi: 10.13801/j.cnki.fhclxb.20220512.002
摘要:
开发和利用绿色生物质材料能够降低石油基聚合物的消耗,但与单根细菌纤维素(BC)相比,BC薄膜表现出较低的力学性能,限制了其应用领域。为协同提高BC复合薄膜的强度和韧性,本文以BC为基体,通过对其碱处理、2, 2, 6, 6-四甲基哌啶-氮-氧化物(TEMPO)氧化处理得到TEMPO氧化的BC(TOBC),并引入羧基化多壁碳纳米管(CNT)作为增强体,采用真空抽滤技术制备出CNT-TOBC复合薄膜,着重探究了CNT的添加对TOBC薄膜力学性能和微观形貌的影响,并探讨其增强增韧机制。研究结果表明:当CNT的添加量为7.5wt%时,CNT-TOBC复合薄膜的力学性能最佳,其断裂应力、伸长率及韧性分别为174 MPa、10.83%和12.01 MJ·m−3,相比纯的TOBC薄膜分别提高了56.76%、144.47%和295.07%,这主要归因于CNT与TOBC间的氢键相互作用、CNT内在高强度及外在增韧机制。研究结果为提高复合材料的界面结合和力学性能提供了一种切实可行的方法,并进一步拓宽了TOBC在柔性电子衬底、智能包装等领域的应用。
金属基和陶瓷基复合材料
界面反应对Cu35Ni25Co25Cr15多主元合金/金刚石复合材料磨损性能的影响
高阳, 肖海波, 刘咏, 张伟
2023, 40(2): 1105-1117. doi: 10.13801/j.cnki.fhclxb.20220331.004
摘要:
金刚石超硬磨具在高端芯片加工、3C陶瓷等领域发挥的作用日益重要,粘结相与金刚石的界面结合情况在很大程度上影响了金刚石超硬复合材料的力学和磨损性能。为了研究粘结相和金刚石的界面结合情况,采用放电等离子烧结方法制备了Cu35Ni25Co25Cr15多主元合金/金刚石复合材料,通过热力学计算和实验研究了粘结相和金刚石颗粒的界面反应。结果表明:烧结过程中,金属粘结相中的Cr元素与金刚石在界面处发生了化学反应,生成Cr—C化合物,且Cr—C化合物层的厚度随着烧结温度的升高而增加。当烧结温度达到950℃时,Cr—C化合物反应层均匀连续,厚度大约为1.1 μm。复合材料粘结相与金刚石颗粒的粘结系数随着Cr—C化合物层厚度的增加而增大。摩擦磨损测试表明,在900℃和950℃烧结的样品表面,粘结相在摩擦过程中首先被磨除,金刚石随后露出,而Cr—C界面反应层有助于保持对金刚石颗粒的把持能力,提高复合材料的磨削性能。因此,适当的界面反应可提升金刚石复合材料的服役性能。
20vol%体积分数纳米Al2O3颗粒增强铝基复合材料的高温压缩性能
李玄, 赵科, 刘金铃
2023, 40(2): 1118-1128. doi: 10.13801/j.cnki.fhclxb.20220401.001
摘要:
为提高铝基材料的高温力学性能以满足其在573 K以上用于航空航天装备结构件的性能需求,采用高能球磨结合真空热压烧结工艺制备了体积分数高达20vol%的纳米Al2O3颗粒(146 nm)增强铝基复合材料,对其微观结构和高温压缩性能进行了研究。结果表明:纳米Al2O3颗粒均匀分散于超细晶铝基体中,且复合材料完全致密;该复合材料具有优异的高温压缩性能:应变速率为0.001/s时,473 K时压缩强度高达380 MPa,即使673 K时依然高达250 MPa,比其他传统铝基材料提高至少1倍;通过对其流变应力进行基于热激活的本构模型拟合可以发现,该复合材料具有高的应力指数(30)和表观激活能(204.02 kJ/mol)。这是由于高体积分数纳米颗粒能够有效钉扎晶界,并与铝基体形成热稳定的界面结合,显著提高复合材料的组织热稳定性,而且在变形过程中与晶界有效阻碍位错运动,显著提高复合材料的热变形门槛应力(在473~673 K时为190.6~328.4 MPa),其热变形过程可以由亚结构不变模型进行解释。
复合材料细观力学
复合材料双波纹面外褶皱缺陷细观力学分析方法
陆媚, 胡祎乐, 余音
2023, 40(2): 1129-1141. doi: 10.13801/j.cnki.fhclxb.20220317.002
摘要:
复合材料由于其高比模量、高比强度和疲劳寿命长等突出的优点被广泛应用于航空航天领域,但在制备过程中易产生褶皱缺陷,并对复合材料层合板的刚度、强度产生负面影响。本文主要研究含有单波纹和双波纹外部褶皱的复合材料力学性能。提出一种解析方法计算单波纹和双波纹褶皱细观力学模型的等效材料属性,通过与数值模型结果的对比与分析,发现含褶皱层合板的等效模量随波纹比绝对值的增大而减小。当波纹比绝对值相同时,含凹陷褶皱的层合板等效模量比含凸起褶皱的层合板等效模量低。不同厚度的含有褶皱的层合板等效模量曲线存在交汇点,交汇点两侧等效模量随厚度变化的趋势相反,且双波纹褶皱与单波纹褶皱的交汇点不同。
针刺C/C复合材料面内拉伸强度预测
刘文台, 程坤, 周何乐子, 白侠, 廖敦明, 周华民
2023, 40(2): 1142-1153. doi: 10.13801/j.cnki.fhclxb.20220310.001
摘要:
为研究针刺碳纤维增强碳基体复合材料(针刺C/C复合材料)面内拉伸强度与渐进损伤,建立了针刺C/C复合材料代表性体积单元有限元模型。模型包含无纬布层、网胎层、针刺纤维束、界面4类子区域,并考虑了孔隙的影响。采用基于应变的破坏准则及指数型损伤演化规律研究无纬布层及针刺纤维束损伤,采用弹塑性本构研究网胎层损伤,采用内聚力牵引分离定律和二次应力破坏准则分析界面损伤。通过两步法计算了孔隙对材料性能的折减效果,并得到上述4个子区域的力学性能,通过ABAQUS UMAT预测了材料的面内拉伸应力-应变曲线及各子区域损伤起始、演化与失效过程,非线性趋势及拉伸强度数值与试验数值吻合较好,验证了该模型有效性。
孔隙率对碳纤维/尼龙6复合材料湿热性能影响的数值模拟研究
雷永鹏, 康振航, 刘驻, 宋权威, 章继峰
2023, 40(2): 1154-1166. doi: 10.13801/j.cnki.fhclxb.20220318.001
摘要:
孔隙在复合材料制造过程中广泛存在,在湿热环境下孔隙的存在会改变应力场和水分场,进而影响复合材料的吸湿性能与力学老化性能。对碳纤维/尼龙6(Carbon fiber reinforced polyamide 6,CF/PA6)复合材料在不同温度浸水环境下吸湿老化后的力学性能测试,研究了温度与吸湿量对其力学性能的影响及强度与模量等力学参数的演化规律,建立吸湿参数与力学参数的关联函数。基于随机顺序吸附法算法(Random sequential adsorption,RSA),建立了纤维、界面和孔隙随机分布的代表性体积单元(Representative volume element,RVE)模型。在本构模型中引入依赖于吸湿量的退化因子,研究了孔隙含量对复合材料横向拉伸、压缩、剪切强度和模量的影响,揭示了湿热老化前后不同的失效机制。结果表明:在热湿老化前,由于应力集中,孔隙会导致复合材料力学性能下降,孔隙率含量每增加1%,横向拉伸强度降低6.4%;湿热老化后,基体吸湿塑化效应是复合材料力学性能降低主要因素,对应降低率为3.86%。
考虑纤维缠绕形态的复合材料结构拉伸承载行为
肖磊, 胡海晓, 曹东风, 雷伟华, 冀涛, 李书欣
2023, 40(2): 1167-1178. doi: 10.13801/j.cnki.fhclxb.20220419.010
摘要:
纤维缠绕复合材料的纤维束具有交叉起伏形态特征,该形态对复合材料结构的力学行为有显著的影响。本文采用数值仿真和实验手段研究了纤维缠绕复合材料平板结构的拉伸力学行为。实验方面,开展纤维缠绕复合材料平板的准静态拉伸实验,通过数字图像相关技术(DIC)监测其表面应变场的演化过程,研究交叉起伏特征对载荷-位移曲线和应变分布特征的影响;数值分析方面,构建包含纤维缠绕形态的介观有限元模型,基于3D Hashin失效准则开展渐进损伤过程模拟,并引入了复合材料的剪切非线性行为。选取层合板结构为参照组,同时开展实验和数值分析。实验结果表明:对于层合结构,缠绕结构的整体刚度更低,失效位移更大,失效载荷基本相同,且缠绕结构菱形特征单元中部纤维交叉起伏区域存在明显的应变集中现象。所构建的有限元模型和实验结果吻合较好,呈现出纤维起伏区域的应变集中、失效起始和扩展行为。
CFRP柔性件保形加工中的变形控制
宿友亮, 黎游, 孟志坚, 王清彬, 郜雪楠, 胡建
2023, 40(2): 1179-1189. doi: 10.13801/j.cnki.fhclxb.20220322.002
摘要:
碳纤维增强树脂基复合材料(CFRP)柔性件的保形加工是航空航天高端装备制造的重要环节,柔性件的可靠装夹是控制加工变形、降低加工尺寸偏差的前提。首先,在理论分析的基础上,明确了柔性件装夹中夹紧及摩擦约束基本条件,提出了基于悬臂梁理论的“随形-就近”吸盘分布原则。进而,使用“ISIGHT-ABAQUS”联合仿真方法,实现了不同装夹条件及等效切削力作用下CFRP柔性件变形的仿真分析,分析表明:真空吸盘的弹性变形易加大装夹变形,应采用弹性真空吸盘与刚性定位吸盘组合的方式;定位吸盘数量为8、12或16,并“随形-就近”分布时,真空吸盘数量及分布对柔性件变形的影响可忽略。最后,仿真与实验分析了考虑定位几何量偏差时的加工尺寸偏差,仿真与实验结果规律基本一致,优化装夹后的加工尺寸偏差最大降幅达57.7 μm (35%);综上,CFRP柔性件保形加工中变形引起的加工尺寸偏差不容忽略,在“随形-就近”、“定位与真空吸盘组合”原则下优化装夹可以大幅降低变形引起的尺寸偏差。
十字嵌锁型格栅夹芯结构设计及低速冲击性能
曹忠亮, 朱昊, 董明军, 何庆
2023, 40(2): 1190-1207. doi: 10.13801/j.cnki.fhclxb.20220311.001
摘要:
针对传统复合材料格栅夹芯结构极限承载能力较低、单胞封闭易造成水汽凝结的问题,在分析管胞微观结构和功能性的基础上,提出一种新型十字嵌锁型格栅夹芯结构。首先选取最小体积(最小质量)和最小变形(最大刚度)为优化目标,利用第二代非支配遗传算法(NSGA-II)完成多目标优化,采用三维Hashin失效准则和改进的刚度退化方法建立格栅夹芯板的冲击渐进损伤有限元分析模型,研究多种低速冲击载荷对不同相对密度夹芯结构的不同位置的破坏机制及力学响应。结果表明:新型格栅夹芯结构表现出良好的低速冲击阻抗,其随芯子的空间分布存在差异,格栅间隙处的抗冲击性能较弱,芯子密度的提高不能有效增强该位置处的冲击强度,夹芯结构所受到的破坏远远大于冲击器撞击格栅交点处的情况;受不同冲击位置和冲击速度的影响,载荷-时间和位移-时间曲线呈现出不同的典型模式,芯子出现屈曲、分层、粘接剥离、折弯变形等失效形式,复合材料上面板发生混合损伤,随着冲击速度的增加,芯子和面板的损伤程度也愈严重。
基于多尺度数值模型的复合材料各向异性热膨胀系数预测
万佩, 夏辉, 刘晨, 贾吉龙, 何学, 丁安心
2023, 40(2): 1208-1217. doi: 10.13801/j.cnki.fhclxb.20220331.001
摘要:
依据复合材料内部纤维在基体内的排布规律及层合板铺层特性,基于多尺度方法,建立单层板和层合板代表性体积单元(RVE)模型,施加相应的边界条件,预测单层板的热膨胀系数和工程常数,进而预测复合材料层合板各向异性的等效热膨胀系数。通过与实验数据对比发现,基于正六边形单层板RVE模型预测的热膨胀系数,相比理论预测值,整体更接近实验值,其中预测的单向T300/5208碳纤维增强环氧树脂基复合材料、P75/934碳纤维增强环氧树脂基复合材料和C6000/Pi碳纤维增强环氧树脂基复合材料的横向热膨胀系数与实验结果的误差分别只有3%、1%和2%;采用单层板RVE预测的单向ECR/Derakane 510C玻璃纤维增强乙烯基酯树脂基复合材料的工程常数与实验值最大相差7.5%;层合板RVE模型预测的正交AS4/8552碳纤维增强环氧树脂基复合材料厚度方向的热膨胀系数与实验结果误差可以忽略,只有0.08%。最后以大型复合结构常用的正交铺层结构为研究对象,基于给出的单层板和层合板RVE模型预测了不同铺层复合材料烟道层合板的等效热膨胀系数,环向铺层比例对厚度方向的热膨胀系数影响较小。
聚甲基丙烯酰亚胺泡沫压缩失效寿命预测及模型验证
孟豪宇, 陈博, 宋江, 孙超明, 闫承磊, 安昕, 张涛
2023, 40(2): 1218-1228. doi: 10.13801/j.cnki.fhclxb.20220314.003
摘要:
聚甲基丙烯酸酰亚胺(PMI)泡沫因其性能优越,在航空航天领域广泛应用。本文主要针队PMI泡沫在弹筒适配器领域的功能特性开展研究,主要研究了其在常温条件下的压缩蠕变特性。依据使用工况及高分子材料的蠕变特性,采用“时间强化”模型设计实验,分别对密度为0.075 g/cm3和0.110 g/cm3的PMI泡沫进行了为期180天的常温压缩蠕变实验。通过对实验数据分析、拟合,预测了两种不同密度的PMI泡沫常温、1250 N条件下的压缩蠕变寿命,密度0.075 g/cm3 PMI泡沫压缩蠕变失效寿命约为11年;而密度0.110 g/cm3 PMI泡沫约为53年,同时对模型的可靠性进行了验证分析。