g-C3N4/POPs异质结制备及其可见光催化性能

Preparation and visible light catalytic performance of g-C3N4/POPs heterojunction

  • 摘要: 光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(VI)为模型污染物探究了不同g-C3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳的光催化还原性能,可见光光照下,30 min还原效率达到99.1%,Cr(VI)还原效率相对g-C3N4和TAPB-DMTP POP显著提高,其拟合一级动力学速率常数分别为纯g-C3N4和TAPB-DMTP POP的22.0倍和2.2倍。同时该材料5次循环后对Cr(VI)还原率仍然达到90%以上,具有优良的光催化稳定性。

     

    Abstract: As a promising environmental remediation technology, the development of efficient and stable photocatalysts with visible light response is one of the important studies in photocatalysis technology. In this work, g-C3N4/porous organic polymers (POPs) composite photocatalysts were prepared via atmospheric solvothermal method. Different ratios of g-C3N4 were in-situ loaded on conjugated porous organic polymers TAPB-DMTP POP synthesized with 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) and 2, 5-dimethoxybenzene-1, 4-diformaldehyde (DMTP) as monomers. The chemical structure and optical properties of g-C3N4/POPs materials were characterized by XRD, FTIR, BET, TGA, UV-Vis DRS, current-time (i-t) and EIS methods. Cr(VI) was selected as the model pollutant, the photocatalytic reduction activities of g-C3N4/POPs photocatalysts with different g-C3N4 loading ratios were explored under visible light conditions, and the effects of pH value, catalyst dosage and substrate concentration were further investigated. The results shows that g-C3N4/POP-2 exhibits the best photocatalytic reduction performance at pH=2 with the reduction efficiency of 99.1% after 30 min of visible illumination. The reduction efficiency of Cr(VI) is significantly improved over g-C3N4/POP-2 compared with pure g-C3N4 and TAPB-DMTP POP, and the fitted first-order kinetics rate are 22.0 times and 2.2 times that of g-C3N4 and TAPB-DMTP POP, respectively. This composite also exhibits excellent photocatalytic stability as the Cr(VI) reduction rate reaches more than 90% after five cycles.

     

/

返回文章
返回