Ti3C2TX MXenes材料在超级电容器中的应用研究进展

Research progress of application of Ti3C2TX MXenes materials in supercapacitors

  • 摘要: 近年来人们对储能设备的需求加大,超级电容器因其优异的性能而受到研究者青睐。二维过渡MXenes材料是一种类似于石墨烯的二维片层材料,具有独特的结构和丰富的官能团,其中Ti3C2TX MXenes材料因其具有优异的导电性、高比面积和高比电容等优点而被广泛用作超级电容器电极材料。然而,Ti3C2TX材料存在易氧化和自堆叠等问题,作为电极材料需要对其性能进行改性和优化。本文主要介绍了Ti3C2TX材料常用的制备方法(如HF刻蚀、氟化盐刻蚀、碱刻蚀、电化学刻蚀等)及Ti3C2TX在超级电容器应用过程的性能改性研究现状,包括构建Ti3C2TX多孔结构、进行表面修饰及制备Ti3C2TX复合电极,并展望了Ti3C2TX型超级电容器未来的发展趋势。

     

    Abstract: In recent years, the demand for energy storage equipment gradually increases, and supercapacitors are favored by researchers because of their excellent performances. Two dimensional transition MXenes are two-dimensional sheet materials similar to graphene, which have unique structure and rich functional groups. Ti3C2TX MXenes have the advantages of good conductivity, high specific area and high specific capacitance, and can be widely used as excellent electrode materials for supercapacitors. However, Ti3C2TX materials have the problems of easy oxidation and self-stacking, and needs to be modified and optimized as electrode materials. This paper mainly introduces the preparation methods of Ti3C2TX materials, such as HF etching, fluoride etching, alkali etching and electrochemical etching, as well as the research methods of performance modification of Ti3C2TX in the application process of supercapacitors, including the construction of Ti3C2TX porous structure, surface modification and preparation of Ti3C2TX composite electrode. The future progress trend of Ti3C2TX supercapacitors is also prospected.

     

/

返回文章
返回