Abstract:
The preparation of bifunctional catalysts with high stability and high activity for hydrogen production from water is one of the important step in the large-scale commercial application of hydrogen energy. Herein, the flake amorphous phytic acid-nickel iron bimetallic composite (NiFe-PA) has been prepared on foamed nickel (NF) by two-step room temperature impregnation using phytic acid (PA), ferric chloride hexahydrate (FeCl
3·6H
2O) and nickel chloride hexahydrate (NiCl
2·6H
2O) as the starting materials. The electrocatalytic performance of NiFe-PA modified NF electrode (NiFe-PA/NF) for water electrolysis in alkaline condition (1.0 mol/L KOH) was investigated by linear sweep voltammetry (LSV). The results show that NiFe-PA/NF, as a bifunctional catalyst, has excellent oxygen and hydrogen evolution properties due to the synergistic effect between Ni and Fe. The overpotentials are only 220 mV at 50 mA·cm
−2 for oxygen evolution reaction (OER) and 135 mV at 10 mA·cm
−2 hydrogen evolution reaction (HER). The NiFe-PA/NFs were then assembled into a two-electrode system for overall water splitting, and the cell voltage required to reach the current density of 10 mA·cm
−2 was only 1.61 V, which is lower than the precious metal catalyst system of RuO
2/NF||Pt-C/NF (1.64 V). It can also satisfy the hydrogen production driven by solar panels (2 V) under solar illumination conditions. Furthermore, owing to the high stability and corrosion resistance of the PA-metal complex, the catalytic stability of NiFe-PA/NF can be maintained at least for 175 h and 75 h, respectively, for the OER and HER at 100 mA·cm
−2, indicating the high catalytic stability of NiFe-PA/NF at high current densities.