Abstract:
In order to study the in-plane tensile strength and the progressive damage behavior of needle punched carbon fiber reinforced carbon composites (needle punched C/C composites), a representative volume element finite element model of needle punched C/C composites was established. The model was divided into four sub-regions: non-woven cloth, short cut fiber felt, needling fibers and interface, and the effect of pores was estimated. Based on the failure criterion and exponential damage evolution law, the damage of the non-woven cloth and needling fibers was studied. The damage of the short cut fiber felt was defined by an elastic-plastic constitutive method. A cohesive force traction separation law and a quadratic nominal stress criterion were adopted at the interface. The negative influence of pores on mechanical properties of the material was considered by two steps. Then, mechanical properties of the four sub-regions were calculated. The in-plane tensile stress-strain curve of the material was predicted through ABAQUS UMAT subroutine, and the damage initiation, propagation and failure of the four sub-regions were simulated. The nonlinear trend and tensile strength agree well with experimentally measured data, which verifies the proposed model.