复合材料双波纹面外褶皱缺陷细观力学分析方法

Micro-mechanics analytical method for composite out-of-plane wrinkle with double fiber-waviness

  • 摘要: 复合材料由于其高比模量、高比强度和疲劳寿命长等突出的优点被广泛应用于航空航天领域,但在制备过程中易产生褶皱缺陷,并对复合材料层合板的刚度、强度产生负面影响。本文主要研究含有单波纹和双波纹外部褶皱的复合材料力学性能。提出一种解析方法计算单波纹和双波纹褶皱细观力学模型的等效材料属性,通过与数值模型结果的对比与分析,发现含褶皱层合板的等效模量随波纹比绝对值的增大而减小。当波纹比绝对值相同时,含凹陷褶皱的层合板等效模量比含凸起褶皱的层合板等效模量低。不同厚度的含有褶皱的层合板等效模量曲线存在交汇点,交汇点两侧等效模量随厚度变化的趋势相反,且双波纹褶皱与单波纹褶皱的交汇点不同。

     

    Abstract: Composites are widely used in aerospace industry because of their outstanding advantages, such as high specific modulus, high specific strength and long fatigue life. However, composite often encounters wrinkle defects in the manufacturing process. The existence of wrinkle defects has negative impacts on the stiffness and strength of composite laminates. The mechanical properties of composites with wrinkle of single and double fiber-waviness were studied in this paper. Analytical and numerical methods were used to calculate the effective material properties of single and double fiber-waviness wrinkle with micro-mechanical models. Through the comparison and analyses of the prediction results from micro-mechanical models, it is shown that when the absolute value of waviness ratio increases, the effective modulus of the laminate with wrinkle decreases. When the absolute value of waviness ratio is the same, the effective modulus of the laminate with concave wrinkle is lower than that with convex wrinkle. There is an intersection point among the effective modulus curves obtained from wrinkled laminates with different thicknesses. The variation of effective modulus associated with laminates thickness is opposite on the two sides of intersection point. The intersection point of wrinkle with double fiber-waviness is different from that of single fiber-waviness.

     

/

返回文章
返回