Abstract:
Fiber bundles of filament wound structure have the morphology characteristic of crossover and undulation, which has significant impact on the mechanical behavior of composite structures. In this research, the tensile mechanical behavior of filament wound composite plate was investigated by numerical and experimental methods. In experimental study, quasi-static tensile experiment of fiber-wound composite plate was carried out, and the evolutions of surface strain field were recorded by digital imaging correlation (DIC). The influences of crossover and fluctuation characteristics on the load-displacement curve and strain distribution were investigated. For the numerical analysis, a meso-scale finite element model was created based on the filament wound morphology. The progressive failure process was simulated based on 3D Hashin failure criterion, and the nonlinear shearing behavior of composites was also involved. The experimental and numerical studies of laminated structures were also carried out as the reference group. The experimental results indicate that, compared with the laminated structures, the filament wound structure gives a lower stiffness, a larger failure displacement, and almost a same failure load. An obvious strain concentration is observed in the fiber crossover and undulating region which locates at the middle area of the filament wound rhombus unit. The finite element analysis results are in good agreement with the experimental ones. The strain concentration in the fiber fluctuation region, as well as the failure initiation and propagation behaviors, are represented properly by the numerical analysis.