Abstract:
Nano FeS has excellent adsorption performance for Cr(VI) because of large specific surface area and strong reducibility, but it is unstable and prone to agglomeration. In order to overcome these disadvantages, the biomimetic FeS composites (bioFeS) were prepared by co-precipitation-roasting method using rape pollen as a biological template. The surface morphology and structure of bioFeS composites were characterized by SEM, XRD and XPS. The effects of adsorbent dosage, reaction time, reaction temperature, initial Cr(VI) concentration and pH on adsorption capacity of Cr(VI) on bioFeS composites were studied to investigate the reaction mechanism using Cr(VI) as the target pollutant. The results show that rape pollen biotemplate successfully disperse FeS with a large specific surface area. The adsorption capacity of Cr(VI) on bioFeS composites can reach 88.95 mg·g
−1 at a reaction time of 120 min, pH of 1, adsorbent dosing of 0.2 g·L
−1 and a reaction temperature of 25℃. The adsorption process conforms to quasi-secondary kinetics and the Langmuir isothermal adsorption model. The coexisting ions NO
3− and SO
42− will inhibit the adsorption capacity of Cr(VI). Combining with adsorption kinetics, thermodynamics and XPS surface element analysis, the mechanism of chromium removal by bioFeS composites mainly involves adsorption and chemical reduction. The method of removal of Cr(VI) in wastewater by bioFeS composites has a promising application.