留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

2022年  第39卷  第6期

电子书
综述
仿生蜘蛛丝微纳米复合材料的集水性能
李昶, 倪中石
2022, 39(6): 2515-2526. doi: 10.13801/j.cnki.fhclxb.20220107.001
摘要:
水是自然界大多数生物生存的必要条件,而动植物界存在着诸多奇妙的浸润现象。仿生微纳米复合材料浸润性相关研究是近年来国内外发展迅速的前沿热点,涉及跨领域、交叉领域。本文对仿生工程领域拥有集水性能的类蜘蛛丝微纳米复合材料的研究进展进行了评述,简要分析了材料的微纳米复合结构及其控制浸润性/液滴行为的机制,总结了类蜘蛛丝微纳米复合材料及集成蜘蛛网的制备技术发展(包括提拉法、静电纺丝法、微流体技术、三维编织技术、3D打印技术等),展示了不同微纳米复合材料及相应集水性能。本文重点分析并对比了仿生蜘蛛丝微纳米复合材料的仿生结构设计、材料制备技术、集水性能等,并展望了拥有集水性能的微纳米复合材料在微流体芯片、天气预报、海水淡化、药物缓释、微反应器、能量储运与转换等多领域的进一步新兴、多功能化应用。
离子液体改性金属-有机骨架复合材料的构筑策略及在环境介质中的应用
费佳颖, 梁艺萱, 李寒冰, 李素梅, 李秭宜, 陈莎
2022, 39(6): 2527-2542. doi: 10.13801/j.cnki.fhclxb.20211129.005
摘要:
金属有机骨架(Metal-organic framework,MOF)是具有较高的孔隙率、比表面积及高度可设计性的新型纳米材料,在吸附分离、固相萃取等诸多领域有着广泛应用。离子液体(Ionic liquid,IL)具有稳定性好、功能可设计的特点,它作为新型绿色溶剂有极大的应用前景。将IL负载到MOF的孔隙中,开发新型离子液体改性金属有机骨架(IL/MOF)复合材料,可以充分发挥两种材料的优势。本文讨论了迄今为止IL/MOF复合材料的所有构筑策略及在大气环境介质中捕集分离CO2和去除水环境介质中污染物的应用和优势,并对未来IL/MOF复合材料在环境介质中的应用方面进行了总结和展望。
磁性壳聚糖微球的改性研究进展及其在水处理中的应用
冯颖, 崔倩, 解玉鞠, 赵孟杰, 张建伟, 董鑫
2022, 39(6): 2543-2555. doi: 10.13801/j.cnki.fhclxb.20211105.003
摘要:
磁性壳聚糖微球(Magnetic chitosan microsphere,MCM)是一种新型吸附材料,具有独特的磁响应特性和良好的吸附性能,以其突出的环保和可控性在生物医学、食品工程和污水处理等许多领域受到高度重视。传统方法制备的MCM存在纳米粒子易溶于酸性溶液、应用范围窄等问题,因此研究者们在其优化改性方面展开了大量工作。本文从磁性纳米粒子改性和壳聚糖改性两个方面详细综述了优化MCM的研究进展,包括磁性纳米粒子的修饰与替换,壳聚糖分子印迹改性、接枝改性、金属螯合改性、烷基化改性等方法。总结了改性后MCM对废水中重金属离子、印染废料中阴阳离子染料的吸附情况和去除效果。最后讨论了改性MCM面临的问题与挑战,展望了其未来发展趋势,提出了进一步提高改性MCM应用效率的方法和设想。
基于反蛋白石结构的功能性薄膜制备及应用研究进展
何文玉, 马万彬, 向娇娇, 张耘箫, 柴丽琴, 周岚, 刘国金
2022, 39(6): 2556-2570. doi: 10.13801/j.cnki.fhclxb.20220120.002
摘要:
作为光子晶体的一种典型结构,基于反蛋白石(IO)结构构筑的功能性薄膜呈现典型的周期性排列,除具有微孔大小均一、孔隙率高、孔径易灵活调控等优势外,还具有一些特殊的光学性质。近年来,IO结构膜引起了检测、防伪、药物输送、过滤等领域的广泛关注。本文首先概述了IO型膜的结构特点和光学特性,然后重点介绍了IO结构膜的制备方法并将其概括为“三步法”和“两步法”,接着详细总结了IO型膜在结构生色、传感器、电致变色、光催化和医学载体五方面的应用进展,最后对其未来的研究方向和发展趋势作出了展望。本研究可为IO型功能性薄膜的推广和应用提供策略支撑。
Sb2S3基负极材料的制备及储能性能研究进展
姚洪志, 李瑞, 连恺, 纪向飞, 赵团
2022, 39(6): 2571-2585. doi: 10.13801/j.cnki.fhclxb.20220106.001
摘要:
由于在低电位范围内的合金化/脱合金化反应机制,硫化锑(Sb2S3)材料的理论放电比容量高达946 mA·h·g−1,是一种有发展前景的锂/钠/钾离子电池负极材料。然而,在电化学反应过程中Sb2S3材料的聚集性和较差的导电性限制了离子/电子转移,导致了较差的电化学性能,严重阻碍了其实际应用。有必要对Sb2S3基负极材料的结构设计和储锂/钠/钾机制及近几年来的一些重要工作进行总结。本文综述了近年来Sb2S3基化合物材料的研究进展,主要包括合理的结构设计和/或与碳基材料结合等策略及所涉及的电化学反应机制,并提出了进一步改善Sb2S3化合物负极材料的展望。
金属磷化物钠离子电池负极材料研究进展
王海花, 金倩倩, 舒珂维
2022, 39(6): 2586-2598. doi: 10.13801/j.cnki.fhclxb.20220120.009
摘要:
钠离子电池(SIBs)因其成本低、安全性高等优势引起了愈加广泛的关注与研究。在已报道的SIBs负极材料中,磷由于理论容量极高被认为是最具应用前景的负极材料之一。然而磷的电导率低,且在充放电过程中会发生体积膨胀,极大地影响了其倍率性能和循环稳定性。将磷与锗、锡、铜等金属结合形成金属磷化物可有效提高其导电性,并显著改善磷基负极材料的倍率性能和循环性能。本文主要综述了金属磷化物及其与碳纳米管、石墨烯等复合材料作为SIBs负极的最新研究进展,总结了目前金属磷化物SIBs负极材料存在的问题,比如实际容量偏低、储钠机制研究不够深入等;提出了相应的解决方法和手段,例如复合材料设计和构筑、表面修饰、尺寸形貌调控和先进原位表征手段等;并对金属磷化物SIBs负极材料的发展前景进行了展望。
树脂高分子复合材料
六方氮化硼-立方氮化硼/环氧树脂复合材料的制备与热物性能
高利达, 李祥, 张效重, 胡宗杰, 杨薛明
2022, 39(6): 2599-2606. doi: 10.13801/j.cnki.fhclxb.20210819.005
摘要:
环氧树脂(EP)高分子复合材料具有较低的热导率,其绝缘器件因散热及耐热性较差长期使用会出现故障和失效等隐患。通过向EP中添加微米氮化硼(BN)来制备具有高耐热性、高热导率的复合绝缘材料,并研究了复合材料的导热性能和耐热性能。结果表明:在六方氮化硼(hBN)质量分数为30wt%时,复合材料的热导率为0.444 W/(m·K),是纯EP的2.3倍。使用KH560改性hBN制备的复合材料,在填料质量分数为30wt%时,复合材料的热导率为0.456 W/(m·K),比未改性略有提高。而对于hBN-cBN/EP热压复合材料,在填料质量分数为30wt%时,其面内热导率为1.32 W/(m·K),远大于法向热导率。通过混掺制备了两种粒径(1、5~10 μm)的hBN/EP复合材料,结果表明:填料混掺能明显提高材料的耐热性,通过向hBN/EP复合材料中添加1 μm和10 μm两种不同粒径的立方氮化硼(cBN)制备复合材料及其热压复合材料,结果表明:加入cBN和热压都能提高复合材料的耐热性能。
高速高载下天然橡胶-反式聚异戊二烯橡胶复合材料的耐磨性
庞松, 刘欢欢, 于洋, 吴友平
2022, 39(6): 2607-2618. doi: 10.13801/j.cnki.fhclxb.20210716.003
摘要:
飞机轮胎在高速高载下使用,其胎面橡胶复合材料耐磨性直接影响轮胎使用寿命。利用实验室自研磨耗机模拟了飞机轮胎在实际行驶过程中受到的高速(> 11 Hz)高载荷(> 1.8 MPa),探究了载荷、转速和炭黑(CB)用量对天然橡胶-反式聚异戊二烯橡胶复合材料(NR-TPI)耐磨性的影响,并结合橡胶磨耗表面形貌和磨屑的形态特征提出了相关影响机制。结果表明,胶料的磨耗随载荷增大而增大,转速对耐磨性的影响小于载荷。当转速从600 r/min增大到800 r/min时,磨耗速率增大,再增大转速,磨耗速率无明显变化。炭黑用量为40或45份的材料磨耗速率接近,但当炭黑用量为50份时,材料的耐磨性显著提升。观察发现磨耗表面出现黏腻的降解层,且磨屑中同时包含微米级的微粒磨屑和大尺寸卷状磨屑,说明高速高载下耐磨性主要取决于表面层降解和降解层被剥离这两个过程的动态循环,前者占主导时主要发生微粒磨耗,后者占主导时起卷磨耗为主要磨耗机制。载荷和转速对耐磨性的影响主要是通过对这两个过程的影响来实现的。
几种改性剂对多孔聚酰亚胺含油性能和摩擦性能的影响
胡旭东, 李锦棒, 叶锦宗, 周宁宁, 谢超, 李建勇, 卿涛, 张激扬
2022, 39(6): 2619-2630. doi: 10.13801/j.cnki.fhclxb.20210728.001
摘要:
为探索多孔聚酰亚胺(PI)材料含油性能及摩擦性能的增强改进方法,采用介孔碳、石墨烯和稀土为改性剂制备多孔PI材料。研究了不同改性剂对材料的含油性能、摩擦性能和力学性能的影响。实验结果表明,介孔碳可大幅提升多孔PI的含油率,相比纯PI,介孔碳含量2wt%时的含油率提高了55.6%,但材料的摩擦系数有增大的趋势,力学性能也明显下降;少量的石墨烯可以提高多孔PI的含油性能和摩擦性能,但随着石墨烯含量的增加,多孔PI的含油摩擦系数快速增加,且冲击强度大幅降低;稀土极大改善了多孔PI的含油摩擦性能,随着稀土含量从0wt%增至5wt%,摩擦系数从0.05下降到0.026,超过5wt%后出现拐点,但所有试样含油摩擦系数均低于纯PI,且含油率呈上升趋势。相比介孔碳和石墨烯,稀土改性多孔PI的力学性能没有出现大幅降低的情况,对多孔PI综合性能的增强效果最优。
基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证
张庆茂, 金东升, 甘建, 张朋, 包建文
2022, 39(6): 2631-2638. doi: 10.13801/j.cnki.fhclxb.20210816.002
摘要:
针对某飞行器钛合金发动机舱尾区结构在应用中存在的结构变形、重量问题及高温环境需求,以耐温等级为350℃的AC729RTM聚酰亚胺树脂基复合材料为设计选材,开展了某飞机发动机舱尾区结构复合材料代替钛合金结构设计,建立了有限元分析模型对复合材料发动机舱尾区结构进行参数分析,最后获取了合理的结构设计参数,最后采用树脂传递模塑成型工艺(RTM)进行了复合材料发动机舱尾区结构制备,同时从静强度试验、结构变形和结构重量三个角度进行了验证评价。结果表明:聚酰亚胺复合材料发动机舱尾区结构经无损检测制件仅局部区域存在小面积孔隙(孔隙率<2%),整个制件的内部质量及外观状态良好;经静强度试验验证,发动机舱尾区结构除局部小范围脱粘外,未出现明显损伤及破坏,符合室温静强度要求;复合材料发动机舱尾区结构外形偏差控制在–0.808~0.664 mm,相比于钛合金结构取得了改善;结构质量相比钛合金减重约27.5%,取得了良好的减重收益。
基于聚醚砜/氰酸酯半互穿树脂体系的碳纤维复合材料性能研究
许培俊, 吴帆, 朱真, 侯静
2022, 39(6): 2639-2648. doi: 10.13801/j.cnki.fhclxb.20210819.003
摘要:
氰酸酯(CE)树脂因具有高玻璃化转变温度、低固化收缩率和优异介电性能,常被作为耐高温或吸波纤维复合材料基体应用于航空航天领域。但由于CE树脂与碳纤维(CF)浸渍黏附性较差、固化温度高、固化物脆性较大,其复合材料制备工艺性较差且固化后易产生分层损伤,严重影响其产品质量及实际应用。本文利用聚醚砜(PES)对CE树脂进行改性,制备出浸润性良好的预浸料以适应各类干法成型复合材料制备工艺。结果表明,PES的引入能够显著提高CF/CE树脂基复合材料的力学性能和热稳定性。与CF/CE单向板相比,7.5wt%PES-CF/CE单向板的弯曲强度提高17%,层间剪切强度提高31%,冲击韧性提高39%,并且纵向热膨胀性系数从−2.07×10−8 K−1降低到−10.7×10−8 K−1,横向热膨胀系数降低20%,改性效果显著。
空心玻璃微珠/超高分子量聚乙烯复合材料低速重载工况下的摩擦磨损性能
姚晨宇, 杨田, 詹胜鹏, 贾丹, 李银华, 孙清云, 李健, 段海涛
2022, 39(6): 2649-2660. doi: 10.13801/j.cnki.fhclxb.20210720.001
摘要:
为提升超高分子量聚乙烯(UHMWPE)材料在低速、重载工况下的摩擦磨损性能,使用经偶联剂表面处理的空心玻璃微珠(HGM)对UHMWPE进行填充改性,通过热压成型工艺制备HGM/UHMWPE复合材料。对HGM/UHMWPE复合材料的硬度、结晶度等进行表征,并对该材料进行干摩擦环境下的重载球盘往复摩擦试验以测定其摩擦磨损性能。结果表明,添加少量HGM可以提高UHMWPE的硬度与结晶度。当摩擦时间较短时,加入HGM会在一定程度上增大UHMWPE的摩擦系数,同时磨损率随复合材料中HGM含量的增加而先降低后升高,当HGM含量为1wt%时,复合材料磨损率最低,在50 N与100 N两种法向载荷的摩擦试验中相比于纯UHMWPE磨损率分别降低44.7%与48.4%。随着摩擦时间的增长,复合材料摩擦系数与磨损率均有不同程度的升高。当摩擦时间达到120 min时,HGM含量为2wt%的复合材料平均摩擦系数最低。此时添加少量HGM的HGM/UHMWPE复合材料在磨损率上与纯UHMWPE磨损率接近。
新型半导体聚乙烯基二氧噻吩@对苯二甲酸铟复合材料的制备、表征与导电性能
田俐, 刘强, 王会锋, 吴杰灵, 易益涛
2022, 39(6): 2661-2667. doi: 10.13801/j.cnki.fhclxb.20210728.002
摘要:
由于单体间易发生交联反应而使聚乙烯基二氧噻吩(PEDOT)导电性能下降和造成后续成型加工的困难,因而寻找合适的聚合方法制备PEDOT显得尤为重要。以金属有机框架材料(MOFs)为反应模板,在对苯二甲酸铟配位聚合物(In-BDC)的一维孔道内实现了3, 4-二乙烯基二氧噻吩(EDOT)的自由基氧化聚合,得到了PEDOT@ In-BDC复合材料。采用XRD、SEM、FTIR、TG及N2吸脱附等方法对所制备的PEDOT@In-BDC复合材料进行了表征分析。结果表明,EDOT氧化聚合反应的单体转化率为91%;在整个EDOT单体的聚合过程中,In-BDC的框架结构保持稳定,其比表面积(BET)为45 m2/g;将EDOT单体引入In-BDC模板孔道内发生聚合反应得到的PEDOT@In-BDC复合材料可以提高金属有机框架材料In-BDC的热稳定性。电流-电压(I-V)线性扫描分析结果显示,PEDOT@In-BDC复合材料是基于PEDOT而具有导电性的一类新型半导体材料,其电导率为2.7×10−5 S/m;与功能性多孔材料In-BDC模板 (10−12 S/cm) 相比,PEDOT@In-BDC复合材料的电导率至少提高6个数量级。
聚环氧棕榈油/聚乳酸共混物的动态硫化制备与性能
吴宇超, 李超, 陈婷婷, 刘文地, 邱仁辉, 邱建辉
2022, 39(6): 2668-2678. doi: 10.13801/j.cnki.fhclxb.20210916.003
摘要:
聚乳酸(PLA)具有优异的力学性能,无毒性、可再生、可生物降解,且生物相容性好,是目前应用最广泛的生物基塑料之一。然而,PLA价格高、脆性大、韧性差等缺点严重限制了其在更多领域的应用。为克服这些缺点,采用双螺杆挤出和注塑成型技术制备生物基的聚环氧棕榈油(PEPO)/聚乳酸(PLA)共混物以增强PLA的韧性,表征了共混物的结晶行为、流变性能、力学性能、热稳定性和微观形貌,以揭示PEPO与PLA的动态硫化机制及PEPO橡胶相对PLA的增韧机制。结果表明:环氧棕榈油(EPO)与PLA熔融共混过程中,EPO在阳离子引发剂的作用下发生自聚,进而在PLA基体中形成颗粒状PEPO橡胶相;两相结构的形成使共混物受力时发生塑性形变,导致PLA的韧性显著提升;当PEPO的用量为20wt%时,共混物的断裂伸长率和拉伸韧性分别从纯PLA的10%和4.7 MJ/m3提高至100%和30.4 MJ/m3,但其拉伸强度、拉伸模量、储存模量和玻璃化转变温度均呈现下降趋势。
冷链物流中二元有机相变储能材料的制备与热物性能
李妍, 郭彦峰, 付俊, 梁静
2022, 39(6): 2679-2689. doi: 10.13801/j.cnki.fhclxb.20210721.002
摘要:
有机相变储能材料相变潜热高、化学性质稳定、无过冷度和相分离现象。通过对正癸酸、月桂酸甲酯、正癸醇、月桂酸及十四烷进行热力学分析并进行两两复配,得到正癸酸-月桂酸甲酯(摩尔比为30∶70)、正癸酸-正癸醇(摩尔比为36∶64)及月桂酸-十四烷(摩尔比为21∶79)三种二元有机复配物,其相变温度均在0~5℃且相变焓较高。利用聚N-异丙基丙烯酰胺(PNIPAM)凝胶对二元有机复配物分别吸附,得到一类适用于果品保质包装与物流技术的相变储能材料;并在凝胶制备过程中加入聚乙二醇1000 (PEG1000)致孔剂,可有效提高凝胶在二元有机复配物的溶胀度。结果表明,PNIPAM-40%PEG1000/正癸酸-月桂酸甲酯相变储能材料的相变温度为3.2℃,相变潜热为188.10 J/g;PNIPAM-40%PEG1000/正癸酸-正癸醇相变储能材料的相变温度为1.2℃,相变潜热为177.74 J/g;PNIPAM-40%PEG1000/月桂酸-十四烷相变储能材料的相变温度为4.2℃,相变潜热为206.17 J/g。
预辐射接枝制备聚乙烯接枝丙烯酸复合膜
高俊娜, 赵康, 崔国士, 束兴娟
2022, 39(6): 2690-2697. doi: 10.13801/j.cnki.fhclxb.20210819.002
摘要:
通过电子束预辐射接枝技术制备不同接枝率的聚乙烯接枝丙烯酸(PE-g-AAc)复合膜,研究探讨了接枝率对复合膜性能影响。结果表明:PE-g-AAc复合膜随丙烯酸浓度增加,接枝率增加,吸水率也随之增加,当丙烯酸体积分数15vol%时,接枝率最大为263%,吸液率最大为635%。PE-g-AAc复合膜随丙烯酸接枝率增加,面电阻降低,当接枝率为30.4%时,PE-g-AAc复合膜面电阻由接枝前45000 mΩ·cm2降低至870.9 mΩ·cm2,接枝率最高263%时,面电阻最低为70.1 mΩ·cm2。拉伸强度随接枝率增加先降低后升高,接枝率最高263%时,拉伸强度最大45.6 MPa;断裂伸长率随接枝率的增加而降低。接枝率分析表明,一定的吸收剂量和反应条件下,丙烯酸浓度越高,链增长速率与链终止速率比值就越大,丙烯酸聚合度越大。吸水率与面电阻分析表明,丙烯酸有效提高聚乙烯膜表面能,增强亲水性,提高离子传导速率,降低聚乙烯膜面电阻。该研究将对聚乙烯接枝丙烯酸膜用于电池隔膜及离子交换膜的制备提供直接的借鉴价值。
石榴石微粉改性硼酚醛树脂的制备与耐高温性能
董闯, 邓宗义, 任依林, 唐青秀, 黄志雄, 石敏先
2022, 39(6): 2698-2706. doi: 10.13801/j.cnki.fhclxb.20210628.001
摘要:
针对纤维增强酚醛树脂复合材料耐热性不足、抗烧蚀性能差的问题,采用岛状硅酸盐矿物-石榴石微粉(AM)作为可陶瓷化填料来改性硼酚醛树脂(BPR),采用模压工艺制备不同填料含量的AM/BPR可陶瓷化复合材料及高硅氧玻璃纤维(HSF)-AM/BPR可陶瓷化复合材料,探究AM对BPR体系的耐热、耐烧蚀和力学性能的影响及在不同温度下材料的物相转变及微观形貌变化。结果表明,随着AM含量的提高,AM/BPR复合材料的耐热性提高,800℃以上形成液相,并在1100℃时形成较致密的陶瓷层,对复合材料高温性能、抗烧蚀性能提高有重要作用,当AM含量为50wt%时,线烧蚀率为0.221 mm/s,质量烧蚀率为0.103 g/s,与纯BPR相比分别降低了44.05%和43.6%;当AM含量为40wt%时,HSF-AM/BPR可陶瓷化复合材料高温处理前后的弯曲强度比未加填料前分别提高了29%和47.97%,其优良的耐热、耐烧蚀和力学性能有望作为热防护材料应用于航天领域。
超高分子量聚乙烯纤维平纹织物-单向布混合堆叠板的防弹机制
袁子舜, 陆振乾, 许玥, 徐望
2022, 39(6): 2707-2715. doi: 10.13801/j.cnki.fhclxb.20210625.001
摘要:
柔性防弹衣具有隐蔽性好、穿着舒适的优点,而采用平纹与单向(UD)布杂化结构具有更好的防护效果。本文采用三层超高分子量聚乙烯(UHMWPE)纤维平纹织物(A)和两层Dyneema® SB51 UD布(B)组成AAABB和BBAAA两种混合靶板,通过弹道实验比较两种排列方式的防弹性能差异。结果表明,将平纹织物在前UD布在后能大幅提升整块板的防弹性能,能量吸收比后者高约20%。进一步采用有限元模拟来阐明其防弹机制,模拟结果表明将平纹织物放在面层不易被切断,使得平纹织物层发生更大的形变,也使后面的UD布发生大面积形变,吸收大量能量。而UD布放在前面层易产生的切力破坏,失去对后面层的作用。而平纹织物在后层容易发生滑移,且形变纵深过大,不利于防弹保护。该研究结果阐明了平纹织物和UD布不同顺序堆叠时的防弹机制,为进一步优化设计该类柔性防弹衣提供了坚实的理论基础。
功能复合材料
基于聚丙烯酰胺有机凝胶的柔性可变色应变传感器
李瑶, 刘群, 黄培, 李元庆, 付绍云
2022, 39(6): 2716-2723. doi: 10.13801/j.cnki.fhclxb.20220225.005
摘要:
柔性应变传感器在可穿戴医疗设备、电子皮肤等领域具有广泛的应用前景,然而传统柔性应变传感器只能输出电信号,缺乏对应力应变的直接可视化响应,限制了其在应力预警、健康监测等方面的应用。本文以柔性透明银纳米线(Silver nanowire,AgNW)/硅橡胶薄膜为电极,以浸渍有机电致变色染料和锂离子的聚丙烯酰胺有机凝胶(Polyacrylamide,PAAm)为变色单元,成功制备了一种具有三明治结构的柔性可变色应变传感器。研究结果表明,该PAAm传感器具有优异的拉伸和压缩回弹性及中等应变响应性能(响应灵敏度为0.7),此外它可在外力作用下产生颜色变化,实现对应变的可视化响应。该传感器在交互式可穿戴设备、电子皮肤、防伪、人工假肢和智能机器人等方面具有广阔的应用前景。
Co类普鲁士蓝/多壁碳纳米管纳米复合材料的制备及其超电容性能
杜佳琪, 陈俊琳, 冀佳帅, 张利, 刘伟, 宋朝霞
2022, 39(6): 2724-2733. doi: 10.13801/j.cnki.fhclxb.20210805.002
摘要:
Co类普鲁士蓝(CoPBA)作为令人瞩目的超级电容器阳极材料拥有高比容量和优异的循环稳定性,但较差的电子导电性限制了其倍率性能。利用ZIF-67作为前驱体合成了Co类普鲁士蓝/多壁碳纳米管(CoPBA/MWCNT)复合材料,并使用XRD、SEM和TEM对材料的结构和形貌进行表征。在三电极体系中,测得CoPBA/MWCNT电极在电流密度为1 A·g−1时电容提高到312 F·g−1。制备的CoPBA/MWCNT电极有利于提高材料电导率和机械稳定性,从而获得更高的电化学性能。将CoPBA/MWCNT正极和活性炭(AC)负极组装为非对称电池,测得5000圈循环后容量保留率为83.1%,循环稳定性优异。
WO3/Bi2MoO6复合薄膜的制备及其光电化学性能
李思远, 杨继凯, 肖楠
2022, 39(6): 2734-2741. doi: 10.13801/j.cnki.fhclxb.20210706.001
摘要:
WO3材料在光电催化方面的应用备受关注,但其光生电子空穴有效分离能力差,对太阳光的利用率较低等问题,限制了其光电催化性能。为了解决这个问题,先用水热法在导电玻璃(FTO)上制备WO3纳米薄膜,然后使用溶剂热法在WO3纳米薄膜上制备不同反应时长(7 h、9 h和11 h)的WO3/Bi2MoO6复合薄膜。通过XRD和SEM测试,证明了WO3/Bi2MoO6复合薄膜的成功制备。对WO3/Bi2MoO6复合薄膜样品进行吸收光谱测试、光电流测试、光电催化测试和交流阻抗测试。结果表明:WO3/Bi2MoO6复合薄膜样品相较于单一WO3纳米薄膜,具有更好的光吸收特性、更优秀的光电流特性和显著提升的光电催化活性。且水热反应9 h的WO3/Bi2MoO6复合薄膜样品具有最高的光电流密度和最优的光电催化效率。分析认为,WO3/Bi2MoO6复合薄膜可能构成了异质结结构,降低了复合薄膜内部的电子阻抗,并且增加了有效的光电化学反应位点;同时通过提高太阳光利用率使光谱的响应范围得到拓展。因此光电化学性能显著提高。
聚苯并咪唑改性联苯型聚酰亚胺电纺锂离子电池隔膜的热学及其电化学性能
巩桂芬, 范金强, 邹明贵, 刘志强, 马续
2022, 39(6): 2742-2749. doi: 10.13801/j.cnki.fhclxb.20210726.003
摘要:
为了改善商业隔膜孔隙率和吸液率不高、耐热性和热尺寸稳定性不佳的问题,通过选用聚苯并咪唑(PBI)预聚体对聚酰亚胺(PI)进行改性,采用高压静电纺丝法制备了质量比PBI∶PI=0.3∶1.0的复合纤维隔膜。研究了复合纤维隔膜的微观形貌、孔隙率、吸液率、热性能、电化学性能及电池性能,并将PBI∶PI=0.3∶1.0的复合纤维隔膜、PI纤维隔膜及聚丙烯(Celgard 2400,PP)隔膜进行了性能对比。结果表明,PBI∶PI=0.3∶1.0的PBI/PI复合纤维隔膜孔隙率达82%,吸液率达618%;在空气气氛中,300℃无尺寸收缩,在N2气氛中,分解温度在400℃以上,800℃时残重大于50%;离子电导率达1.29×10−3 S/cm,较PP隔膜几乎提高了1个数量级;界面阻抗为489.34 Ω,较PP隔膜降低了17%;电化学稳定窗口提高到5.05 V,为PP隔膜的119%;以PBI∶PI=0.3∶1.0的复合纤维隔膜组装的CR 2032型电池表现出优异的电池性能,经大电流放电后电池性能稳定,初始放电容量达130.01 mA·h/g,在1 A/s循环100次后容量保持率高达98.91%,均优于Celgard 2400隔膜电池。
可氧化再生的“核-壳”结构磁性吸附剂Mn0.6Zn0.4Fe2O4@SiO2-CeO2对水中氧氟沙星的吸附机制
徐冬莹, 谢知音, 余静, 刘建英, 徐成华, 邓志勇, 翟婉婷, 郝旗
2022, 39(6): 2750-2763. doi: 10.13801/j.cnki.fhclxb.20210722.002
摘要:
为去除水中难生物降解的氧氟沙星(OFLX),突破吸附剂固液分离和再生难的瓶颈,采用SiO2和CeO2功能化修饰Mn0.6Zn0.4Fe2O4磁性纳米颗粒,制备得到磁性纳米复合物吸附剂Mn0.6Zn0.4Fe2O4@SiO2-CeO2,利用XRD、FTIR、SEM、TEM、和振动样品磁强计等对Mn0.6Zn0.4Fe2O4@SiO2-CeO2进行了系统表征。3种动力学模型(拟一级动力学、拟二级动力学和颗粒内扩散模型)、3种等温线模型(Langmuir、Freundlich和D-R模型)和吸附热力学的研究结果表明:该吸附过程的速率由颗粒内扩散和液膜扩散等多种因素共同控制;该吸附过程以物理吸附为主,化学吸附为吸附速率控制步骤;吸附过程可自发进行,为放热和熵减小的过程。FTIR和XRD的表征结果表明,π-π共轭作用、分子间氢键和配位作用等是Mn0.6Zn0.4Fe2O4@SiO2-CeO2和OFLX之间的主要相互作用力。经6次吸附-氧化原位再生循环后,Mn0.6Zn0.4Fe2O4@SiO2-CeO2对OFLX平衡吸附量为27.00 mg·g−1。研究结果可为难生物降解的OFLX的控制技术研究提供基础理论数据。
氧化石墨烯负载Ag3PO4@聚苯胺复合材料的制备及其光催化性能
王毅, 吴梦亚, 雷伟岩, 武世然, 王岳, 岳玉琛, 沈毅, 李锋锋
2022, 39(6): 2764-2773. doi: 10.13801/j.cnki.fhclxb.20210708.003
摘要:
为了解决Ag3PO4严重的光腐蚀问题,采用化学吸附法制备了核壳结构的聚苯胺(PANI)包覆磷酸银(Ag3PO4@PANI),并用氧化石墨烯(GO)作为Ag3PO4@PANI复合光催化剂的载体,通过PANI和GO的协同作用提升了载流子的分离效率。当GO与Ag3PO4@PANI质量比为4%时,催化剂在24 min内降解苯酚的去除率可达98.1%,18 min内对环丙沙星(CIP)的去除率可达90.3%,15 min内对四环素(TC)的去除率可达98.6%,在5 min内对各类染料的去除率为100%。经过6次重复反应,Ag3PO4@PANI/GO仍保持较好的稳定性。自由基捕获实验证实•h+和•O2是光催化降解的主要活性物种。实验结果表明,PANI与Ag3PO4之间形成了核壳结构,GO的引入提升了电子的传输速率,PANI和GO对Ag3PO4的协同作用促进了光生电子-空穴的分离,进而提升了Ag3PO4的稳定性和光催化活性。
膨润土基类芬顿复合材料的制备及其吸附去除废水中污染物的性能
郑宇, 于洁, 李平, 王趁义, 徐园园, 田啸, 汤唯唯
2022, 39(6): 2774-2782. doi: 10.13801/j.cnki.fhclxb.20210922.002
摘要:
为实现废弃物资源化及去除废水中污染物,将粉煤灰、干化污泥、牡蛎壳等3种原料按照一定比例混合为基础原料(FDO),掺入2种膨润土基无机矿物材料,制得具有去除氨氮(NH4+-N)和高锰酸盐指数(IMn)双重功能的2种新型类芬顿复合材料(SFM),分别记作活性白土型(ATC/FDO)、膨润土型(BT/FDO)。使用SEM和BET对SFM的表面形貌、孔径结构进行了表征,对比研究了2种SFM在类芬顿体系下对废水中的IMn和NH4+-N的吸附去除效果,并采用动力学和吸附等温模型分析其吸附特性。结果表明,ATC/FDO对IMn和NH4+-N的去除效果优于BT/FDO,处理5天后,相应的去除率分别高达95.76%和99.65%;ATC/FDO最优制备条件是:FDO∶ATC的质量比为5∶5,煅烧温度400℃,煅烧时间120 min;最佳使用条件是:20℃、pH=6.5,ATC/FDO∶H2O2用量比为5 g/L∶1 mL/L。2种SFM对NH4+-N的吸附过程均符合准二级动力学,且符合Freundlich吸附等温方程。研究结果能为废弃物的资源化利用和水处理领域提供新技术和新材料。
含椭圆叶片状SiO2/聚乙烯醇渗透汽化复合膜的制备与性能
吴玉萍, 王乾廷, 孙炜, 周忠华, 谢宗丽, 宋铭雨
2022, 39(6): 2783-2791. doi: 10.13801/j.cnki.fhclxb.20210909.006
摘要:
如何制备含形貌可控且高度分散无机纳米颗粒的高性能复合分离膜,是当前膜分离领域的研究热点和难点。本文采用溶胶-凝胶和溶液刮涂法将聚乙烯醇(PVA)、马来酸(MA)和SiO2三者交联制备得到混合基质膜。通过SEM、FTIR、XRD对SiO2/交联PVA混合基质膜进行结构表征,在50℃下对97wt%乙醇水溶液进行渗透汽化性能测试。结果表明,含椭圆叶片状SiO2聚集体的SiO2/交联PVA混合基质膜,椭圆叶片状SiO2纳米颗粒聚集体可作为表面预筛选层,且在基体内高度分散,能够同时增加对醇水溶液的渗透通量和选择性。对97wt%乙醇水溶液的渗透通量和选择性分别高达 0.072 kg·m−2·h−1和12301。分离性能提高的原因可能是由于该混合基质膜具有表面预筛功能和更致密的网络结构。该结果将促进纳米SiO2/PVA复合材料的研究及该类材料在分离领域的应用。
柔性量子点复合薄膜及其电致发光器件的弯折性能
陶焕, 张明睿, 雷诗云, 喻康林, 林雪慧, 刘学清, 肖标, 刘继延
2022, 39(6): 2792-2800. doi: 10.13801/j.cnki.fhclxb.20220124.002
摘要:
近年来,可弯曲的柔性电子器件引起了人们广泛的关注,但器件的性能稳定性和弯折稳定性阻碍了其实际应用。本文通过对柔性量子点发光二极管(QLED)施加弯折作用力,着重探究QLED弯折前后功能薄膜及器件性能的变化。通过调控QLED的弯折曲率半径,测试得到薄膜参数和器件电学性能。利用有限元方法对不同弯折半径下的聚对二甲酸乙二醇酯-氧化铟锡(PET-ITO)复合透明电极进行分析,结果显示随着弯曲曲率半径的减小,ITO电极会出现更明显的应力集中现象。对其进行形貌表征和方阻测试表明过度弯折会使电极材料出现损伤,方块电阻增大。电导率测试结果表明弯折行为会减弱电荷的传导能力。利用瞬态电致发光光谱(TREL)技术对弯折前后的器件进行了表征,结果表明弯折曲率半径的减小,降低了电极上电荷传输的效率,同时较小的弯折曲率半径会导致内部缺陷的增加,降低器件内部载流子的注入与传输效率,对器件的性能造成影响。
土木建筑复合材料
FRP非均匀约束海水海砂混凝土方柱轴压性能
杨俊龙, 王吉忠, 卢世伟, 张丽华, 王子茹
2022, 39(6): 2801-2809. doi: 10.13801/j.cnki.fhclxb.20210708.004
摘要:
为扩大纤维增强树脂复合材料(FRP)-海水海砂混凝土(SSC)组合结构的应用范围,改善FRP约束海水海砂混凝土柱脆性破坏特性,对碳纤维增强树脂复合材料(CFRP)非均匀约束海水海砂混凝土方柱的轴压性能进行了研究。试验结果表明:由于CFRP非均匀约束试件中沿高度方向CFRP厚度并不相等,因而整个破坏过程具有明显的预兆,故脆性行为得到明显改善。相比于相同体积率下的全包裹和条带约束试件,其具有更优越的力学性能,尤其是在净距比较小的情况下。随着外部CFRP条带净距的下降和层数的增加,试件的极限强度和变形能力显著提高。具体而言,由于FRP条带净距的降低导致试件的极限强度增幅在5.4%~18.5%不等,而在净距比固定状态下,当外部条带层数增大1倍后,极限强度与应变的最大增幅分别为15.8%和21.8%。最后基于试验数据,对现有部分代表性应力-应变模型对于非均匀约束混凝土的适用性进行了讨论,并给出了所有模型对于试件极限状态的预测精度与误差大小。
CFRP片材-工程水泥基复合材料-混凝土复合界面单面剪切试验研究
管品武, 尚佳琦, 范家俊, 张普, 陈启壮
2022, 39(6): 2810-2820. doi: 10.13801/j.cnki.fhclxb.20210716.001
摘要:
为解决碳纤维增强树脂复合材料(CFRP)片材加固混凝土结构时CFRP片材易过早剥离及工程水泥基复合材料(ECC)加固混凝土结构极限承载力提高不足等问题,采用CFRP片材-ECC-混凝土复合界面,以同时发挥CFRP片材高抗拉强度和ECC多缝开裂及耐久性较好的优势。设计21个单面剪切试件并进行单面剪切试验,研究不同ECC厚度和混凝土/ECC强度对复合界面承载力、应变分布及粘结滑移曲线等影响规律。试验结果表明:设置ECC层的单面剪切试件破坏模式均为CFRP片材和ECC界面间的剥离破坏,有效延缓了CFRP片材的剥离,并可以有效地传递界面剪应力。与无ECC层的试件相比,设置ECC层试件的极限承载力增加了27.3%~59.6%。基于陆新征等提出的极限承载力计算模型,提出了考虑ECC厚度的复合界面单面剪切试件的极限承载力预测模型,计算值与试验值相吻合。采用不同粘结滑移模型对试验数据进行分析,对比结果表明:Ferracuti等提出的模型考虑的影响因素较全面且模型的拟合结果较好。
基于分子动力学模拟的过硫磷石膏矿渣水泥组成设计
徐方, 李恒, 孙涛, 水中和, 丁超
2022, 39(6): 2821-2828. doi: 10.13801/j.cnki.fhclxb.20210816.005
摘要:
原材料化学成分的组成设计是过硫磷石膏矿渣水泥(PPSC)水化反应与力学强度形成的基础,室内试验与分子动力学模拟(MD)为PPSC原材料的化学组成提供了多尺度调控设计依据。利用Materials Studio(MS)软件建立PPSC结构模型,采用MD与XRD等手段研究了化学成分摩尔比对PPSC抗压强度的影响规律。结果表明:随着CaO/SO3摩尔比的增加和SiO2/Al2O3的降低,PPSC的抗压强度呈增长趋势,当SiO2/Al2O3摩尔比为3.5~3.7、CaO/SO3摩尔比为1.8~2.0时,PPSC的抗压强度较高。分子动力学对PPSC孔结构的模拟结果与抗压强度试验结果规律相反,证明了模拟结果的可靠性。在原子尺度上,分子动力学模拟表明O、Ca、Al及S原子表现出较高的扩散能力,在碱性环境下,硫酸盐激发作用使S=O、Al—O及O=O键长增大而结构失稳水解,生成较多对强度起促进作用的钙矾石。通过调控原材料SiO2/Al2O3摩尔比和CaO/SO3摩尔比可使PPSC形成更加稳定的内部结构。化学成分摩尔比设计及分子动力学模拟方法对PPSC的组成设计和应用推广具有重要意义。
基于X-CT的高温后再生保温混凝土损伤分析
苗艳春, 张玉, SELYUTINANina, SMIRNOVIvan, 邓克招, 李贝贝, 都思哲, 刘元珍, 马钢
2022, 39(6): 2829-2843. doi: 10.13801/j.cnki.fhclxb.20210716.007
摘要:
火灾的发生往往会导致混凝土材料微细观结构的损伤劣化,体现在水化物分解、孔隙结构粗化、热开裂和水汽压力升高诱致开裂等,继而导致材料宏观力学性能及耐久性的下降。轻质高强、内部多孔、高热稳定的玻化微珠(GHB)的细观调控功能可实现混凝土耐高温性能的提升。为了研究受高温作用的再生保温混凝土(RATIC)内部细观结构及裂纹变化特征,本研究首先对高温作用后的RATIC开展了立方体抗压强度试验和CT扫描试验,之后利用基于改进的自适应阈值法和区域生长法的图像分割算法,建立了基于真实结构的RATIC细观模型,分析了不同GHB及再生骨料(RCA)掺量的RATIC试件随温度变化时其内部微裂纹的孕育、萌生、发展及贯通过程。并对RATIC破坏形态与CT结果进行了对比分析。研究结果表明:GHB对裂缝的延伸有显著阻断作用,为蒸汽压提供了释放通道,缓解了砂浆区域、孔隙边界处的开裂,减缓了热量的传播,提升了混凝土抗热致损伤性能。
超低温作用对超高韧性水泥基复合材料抗弯性能的影响
苏骏, 钱维民
2022, 39(6): 2844-2854. doi: 10.13801/j.cnki.fhclxb.20210823.001
摘要:
超高韧性水泥基复合材料(UHTCC)作为一种具有良好力学性能和耐久性能的新型复合材料,弯曲韧性是评价其力学性能的重要指标。为探究UHTCC材料在超低温环境下的抗弯性能,设计了5组不同纤维体积掺量的UHTCC新材料,经过深冷处理后进行四点弯曲试验,对其进行等效强度分析,提出一种适用于超低温作用后的韧性评价方式,为UHTCC在超低温领域的广泛应用提供理论基础和技术支持。研究结果表明:超低温作用后UHTCC的弯拉强度显著提升,当温度降低至−160℃,UHTCC的弯拉强度最大可提升67.67%,但表现出明显的脆性;超低温环境下1.5vol%UHTCC的强度及韧性性能提升效果最佳,但超出最优掺量后,UHTCC的性能反而略微降低。
回收碳纤维混凝土导电性
王艳, 张彤昕, 郭冰冰, 牛荻涛
2022, 39(6): 2855-2863. doi: 10.13801/j.cnki.fhclxb.20210902.001
摘要:
碳纤维增强树脂复合材料从生产、服役到退役的整个生命周期都会产生巨量废弃物,带来了严重的环境污染与资源浪费问题。本文将生产过程中产生的废弃碳纤维掺加到混凝土中,研究其对混凝土强度及导电性的影响规律与机制。结果表明,回收碳纤维对混凝土强度改善效果不明显,这是由于工业碳纤维表面的涂层使其在混凝土拌合过程中更易聚集成束,不易分散。回收碳纤维的掺入可明显提升混凝土导电性,掺量为0wt%~0.3wt%时,干燥/吸水过程改变混凝土孔结构且C—S—H凝胶重新排列、局部收缩与部分不可逆特性使混凝土产生新的导电路径,电阻率随含水率降低呈现先升后降的趋势;掺量为0.4wt%~1.5wt%时,混凝土内部形成了稳定的物理接触导电网络,龄期及含水率对导电率无明显影响。
正十四烷/石墨低温相变水泥基材料的制备及冻融损伤演化
于本田, 陈延飞, 李双洋, 杨玉祥, 胡柏春, 刘涛
2022, 39(6): 2864-2874. doi: 10.13801/j.cnki.fhclxb.20211110.002
摘要:
以正十四烷(C14)为相变材料,膨胀石墨(EG)为载体,通过物理吸附法制备C14/EG复合相变材料,采用SEM、DSC、FTIR对C14/EG复合相变材料的微观形貌、相变温度、相变潜热、化学结构进行了测试。开展了外掺(与水泥质量比)0%、2%、4%、6%相变材料的相变储能水泥基材料(PCESM)快速冻融循环试验,分析了冻融循环对表面损伤、质量损失、动弹模量损失、抗压强度及孔结构的影响规律,揭示了PCESM冻融循环劣化机制。试验结果表明:C14能够较好地吸附在EG孔隙中,C14与EG之间有良好的相容性,二者未发生化学反应。由于C14/EG相较于水泥基材料为弱相,因此随着C14/EG相变材料掺量的提高,PCESM的力学性能随之下降,但抗冻性能随着C14/EG相变材料掺量的提高呈现先提高后降低的规律,C14/EG相变材料掺量为4%的PCESM抗冻性最优。
氯盐侵蚀下铜矿渣混凝土高温后内部钢筋锈蚀规律
陈奇, 公伟, 苗吉军
2022, 39(6): 2875-2884. doi: 10.13801/j.cnki.fhclxb.20210622.006
摘要:
为探究高温及铜矿渣细骨料对混凝土中钢筋锈蚀模式的影响规律,对不同铜矿渣置换率的混凝土试件进行高温试验,然后采用干湿循环浸泡法对试件进行人工加速氯离子侵蚀试验,并利用电化学方法测量自然电位值以监测混凝土内部钢筋的锈蚀情况,最后测量混凝土内部氯离子含量及钢筋锈蚀率。结果表明:自然电位法可以较好地反映试件内部钢筋的实际锈蚀情况;高温破坏了混凝土抗氯离子侵蚀性能,从而导致混凝土试件中的钢筋锈蚀程度随经历温度的升高而增大;此外,高温下铜矿渣自身较大的膨胀变形及冷却后与水泥净浆间不协调收缩的综合作用进一步破坏了混凝土微结构,使钢筋锈蚀率随着铜矿渣置换率的提高而增大;最后建立了氯盐侵蚀下铜矿渣混凝土高温后内部钢筋锈蚀深度拟合公式。
生物纳米复合材料
碳化柚子皮基复合相变材料的制备及性能
李绍伟, 傅彬彬, 李静
2022, 39(6): 2885-2893. doi: 10.13801/j.cnki.fhclxb.20210906.004
摘要:
低品位热能如太阳辐射热能是能源利用和转化中的重要组成部分,由于总量大且往往未被有效利用而散发到环境中造成浪费和能源利用效率低等问题。基于相变材料的光热转化储热成为利用太阳辐射能的重要方式之一,因此针对相变材料聚乙二醇易泄露的问题,关注于废弃生物质柚子皮,通过简单的碳化过程将其转化为骨架支撑和光吸收双功能材料,并进一步电沉积处理增强其吸光性能。真空浸渍聚乙二醇后得到无泄漏的形状稳定复合相变材料,具有高的负载量、高相变焓保留、优异的循环稳定性,100次循环质量损失最多仅为2.2%,光热转化储热效率达87.5%。基于废弃的柚子皮制得无泄漏的相变复合材料不仅成本低廉,制备操作简单,实现了废物利用,而且为进一步高效和综合利用低品位热能提供了新的选择。
亲水基团对十二烷基阴离子乳化剂在SiO2表面吸附影响的分子动力学模拟与试验研究
全秀洁, 孔令云, 王昊敏, 张艺昕, 罗万力, 杨博
2022, 39(6): 2894-2906. doi: 10.13801/j.cnki.fhclxb.20210803.001
摘要:
乳化沥青破乳过程中,乳化剂分子亲水基团吸附于集料表面,亲油基团牵引沥青微滴向集料表面聚集,从而达到破乳。因此,为了探究乳化剂亲水基团对乳化沥青破乳过程的影响,通过分子动力学模拟和电导率试验探究了疏水基团为十二烷基碳链、亲水基团不同的5种阴离子乳化剂在玄武岩主要化学成分(SiO2)表面的吸附情况。模拟结果表明,亲水基团中的K+比Na+更能增强十二烷基阴离子乳化剂与水分子间的范德华相互作用,促进十二烷基阴离子乳化剂在SiO2表面的聚集和吸附;在亲水基团中引入苯基官能团可提高十二烷基阴离子乳化剂与水分子间的范德华相互作用、十二烷基阴离子乳化剂在SiO2表面的吸附能力,苯基官能团的引入率越高,十二烷基阴离子乳化剂与水分子间的范德华相互作用及十二烷基阴离子乳化剂在SiO2表面的吸附能力越强;由于库仑力的作用,5种十二烷基阴离子乳化剂的疏水基团尾端C原子、亲水基团极性头S原子在SiO2表面的扩散行为比十二烷基阴离子乳化剂自身在SiO2表面的扩散行为弱。试验结果表明5种十二烷基阴离子乳化剂在SiO2表面的吸附量随着乳化剂浓度和固/液比的增大而增加;5种阴离子乳化剂在SiO2表面的吸附量大小排序与分子动力学模拟的结果一致,验证了结论的可靠性。
菠萝蜜种子淀粉可生物降解复合膜的制备及性能
王向兵, 李小侠, 冯航航, 彭辉, 马国富
2022, 39(6): 2907-2917. doi: 10.13801/j.cnki.fhclxb.20210909.005
摘要:
针对传统塑料制品难降解、污染环境等问题,选用环境友好、可降解菠萝蜜种子淀粉(JFss)、羧甲基纤维素钠(CMC)和海藻酸钠(SA)为原料,采用涂膜工艺制备了一种可生物降解复合膜。研究JFss的用量对复合膜力学性能、耐水性、水溶性、透湿性的影响及复合膜润湿性随着时间变化规律,并对复合膜进行土埋降解性测试。采用SEM、FITR、XRD和TGA对复合膜形貌、结构和热稳定性表征。结果表明,JFss的添加使复合膜拉伸强度提高35.8%,耐水性提高4.16%,水溶性提高7.8%,水蒸汽阻隔性提高153.7%,且具有良好的润湿性、保湿性和生物降解性。另外,复合膜中CMC、SA、JFss各组分形成分子间氢键,具有良好的相容性和热稳定性。本方法复合膜制备的原料廉价、制备简单,可大规模生产,在生物降解材料领域具有潜在的应用价值。
左旋聚乳酸-聚己内酯-醋酸纤维素三维微-纳米复合纤维多孔支架材料的制备与生物矿化活性
赵瑨云, 刘瑞来, 胡家朋, 穆寄林, 付兴平
2022, 39(6): 2918-2929. doi: 10.13801/j.cnki.fhclxb.20210906.007
摘要:
3D纳米纤维多孔支架作为骨组织工程支架材料具有很好的发展前景。在无其它任何添加剂条件下,通过低温相分离方法制备了左旋聚乳酸-聚己内酯-醋酸纤维素(PCL-CA-PLLA)三维微-纳米复合纤维多孔支架材料。采用SEM分析聚合物比例、淬火时间、聚合物浓度和淬火温度等条件对纤维支架材料形貌影响。PCL-CA-PLLA(1∶1∶8)的直径为(276±121) nm,该直径与细胞外基质的尺寸大小(50~500 nm)相当,孔隙率和比表面积分别为95.12%和54.18 m2/g。说明PCL-CA-PLLA三维微-纳米复合纤维多孔支架材料为高孔隙率和大比表面积的三维多孔材料。与纯PLLA纤维支架材料相比,PCL-CA-PLLA三维微-纳米复合纤维多孔支架材料的机械强度有所提高,亲水性有所改善。PCL-CA-PLLA三维微-纳米复合纤维有望成为理想的组织工程支架材料。
基于真空辅助树脂传递模塑成型不同纤维形态竹纤维复合材料性能研究
施江靖, 陈红, 张文福, 吴婕妤, 徐祥
2022, 39(6): 2930-2940. doi: 10.13801/j.cnki.fhclxb.20210726.001
摘要:
为探索不同形态竹纤维(BF)对真空辅助树脂传递模塑成型(VARTM)过程中环氧树脂(EP)浸渍纤维效果及BF/EP复合材料性能的影响,采用经机械碾压2次、3次、4次得到3种不同形态的BF(BF-2、BF-3和BF-4),通过湿法层铺工艺将BF制作成竹纤维毡(BFM),再利用VARTM制备出纤维含量为45wt%的复合材料BF-2/EP、BF-3/EP和BF-4/EP。采用ESEM、超景深显微镜、力学试验机、TG、DMA和Micro-CT对BF、BFM和BF/EP复合材料性能进行表征。研究结果表明:随纤维长度减小、纤维分离度增加,导致湿法层铺成型的BFM蓬松度降低,树脂注射难度增大,BFM-4在树脂注射时会发生纤维堆积,BF-3/EP复合材料吸水率最低。BF-2的长度较长、分离度低,虽保持了BF束自身结构与性能,但是与树脂界面结合性能差,长度与分离度适中的BF-3制备的复合材料力学性能最佳,弯曲强度、弹性模量、剪切强度和冲击韧性分别为97.90 MPa、7.2 GPa、17.01 MPa和8.11 kJ/m2。BF加速了BF/EP复合材料的热解,BF-4/EP复合材料因BF-4中半纤维素含量少,热解温度有所提高。BF能够提升EP的刚性,BF-3与树脂界面结合最佳,孔隙体积占比仅为0.04%,BF-3/EP复合材料储能模量最大值高达5198 MPa。使用VARTM制备BF/EP复合材料时,BF尺寸与分离度是影响纤维与树脂界面结合性能和BF/EP复合材料性能的关键因素。
金属基和陶瓷基复合材料
界面反应产物对B4C/Al复合材料颗粒润湿性及界面强度的影响机制
郭文波, 胡启耀, 肖鹏
2022, 39(6): 2941-2948. doi: 10.13801/j.cnki.fhclxb.20210707.005
摘要:
采用搅拌铸造法制备了B4C/Al复合材料,利用实验分析结合第一性原理计算的方法,探讨了界面反应产物Al3BC和TiB2对B4C/Al复合材料颗粒润湿性及界面结合强度的影响机制。结果表明,界面反应产物为Al3BC时,B4C颗粒润湿性没有得到实质性改善,存在明显的颗粒团聚现象,界面结合强度较低且过度的界面反应使B4C颗粒分解损耗严重,导致B4C颗粒增强效果不明显;而通过添加Ti元素使界面反应产物为TiB2时,颗粒润湿性明显改善,B4C颗粒团聚现象显著减少,界面结合强度较高,力学性能得到显著提高。这主要是由于不同终端的Al(111)/TiB2(0001)界面黏附功均大于Al(111)/B4C(0001)的界面黏附功,表明界面反应产物TiB2可以提高B4C颗粒的润湿性,而界面反应产物Al3BC对提高B4C颗粒的润湿性非常有限;Al(111)/Al3BC(0001)和Al(111)/TiB2(0001)的界面上均形成了混合的共价键/金属键;Al(111)/TiB2(0001)的界面上的化学键作用力更大,相应地界面结合强度也更大。
复合材料细观力学
细观结构参量对推进剂力学性能影响的数值研究
乌布力艾散•麦麦提图尔荪, 吴艳青, 侯晓, 王宁
2022, 39(6): 2949-2961. doi: 10.13801/j.cnki.fhclxb.20210708.001
摘要:
为了更好地理解并预测复合固体推进剂组分、界面对其宏观力学性能的影响,在细观层次上建立了考虑界面和颗粒形貌的代表性体积单元(Representative volume elements,RVE)计算模型,通过引入内聚力模型(Cohesive zone model,CZM)研究了界面刚度、强度及最大失效位移对推进剂力学性能的影响,并对比分析了颗粒形貌与界面对其力学性能的贡献。研究结果表明:界面刚度为0.004~400 MPa/mm时,推进剂初始模量从0.67 MPa提升到3.67 MPa;界面强度从0.05 MPa提高至30 MPa时,推进剂拉伸强度从0.15 MPa 提高到了0.76 MPa,即界面刚度增加对推进剂初始模量的提高有限,而界面强度对其拉伸强度的提高非常显著;然而,较高的界面强度可能导致细观结构出现“损伤局部化”,从而降低延伸率。相对于界面对推进剂实际力学性能的提升,颗粒级配、形状的作用显得较小,说明界面是决定推进剂拉伸性能的主要因素之一。最后基于以上分析结果,对另一种推进剂在不同应力下的蠕变性能进行了预测,发现蠕变断裂时间的对数与恒定应力满足线性关系。
石墨烯/聚甲基丙烯酸甲酯纳米复合材料的拉伸性能:粗粒化分子动力学模拟
侯国珍, 陈小明, 丁鹏, 马河川, 张洁, 邵金友, 吴建洋
2022, 39(6): 2962-2973. doi: 10.13801/j.cnki.fhclxb.20210707.004
摘要:
高强度是复合材料设计追求的重要目标,自然界中的珍珠层具有优异的力学性能,受其复杂的层次结构的启发,设计了一种石墨烯交错排布增强聚甲基丙烯酸甲酯的纳米复合材料。利用粗粒化分子动力学模拟,系统地研究了拉伸载荷作用下石墨烯的二维几何形状、层数、空间排布对纳米复合材料整体力学性能的影响。结果表明,不同几何形状的石墨烯对复合材料的增强效果有很大的差异,其中,矩形与锯齿形接近,都强于梯形石墨烯;存在最佳的石墨烯层数使复合材料的整体拉伸力学性能最强;减少石墨烯层间距离或增加重叠距离,都可提升其力学性能。总之,现有的研究结果揭示了各个因素的影响规律及微观机制,为设计具有目标性能的纳米复合材料提供了理论指导。
钻孔分层损伤对复合材料层合孔板压缩力学行为的影响
安泽君, 曹东风, 郑凯东, 胡海晓, 李书欣
2022, 39(6): 2974-2986. doi: 10.13801/j.cnki.fhclxb.20210902.005
摘要:
钻孔分层损伤对复合材料层合孔板的承载能力和失效模式有着显著的影响。通过实验和仿真相结合的方式,开展单一预制分层缺陷下、双分层缺陷同侧耦合及双分层缺陷异侧耦合作用下复合材料层合孔板的压缩承载能力及失效模式的研究。通过预埋聚四氟乙烯薄膜,制备了含单一圆形预制分层缺陷的碳纤维增强树脂复合材料开孔板试件,采用浸没式超声C扫和数字图像DIC技术分别对复合材料层合板损伤和法向变形进行检测,研究含不同尺寸预制分层开孔层合板在压缩载荷下的分层扩展及失效变形特征,进而揭示分层缺陷大小对其承载能力的影响机制。构建基于内聚力单元方法的含孔复合材料层合板数值模型,对比实验修正模型,探索了单一预制分层缺陷下碳纤维增强树脂复合材料开孔板的损伤扩展机制,并在此模型基础上开展双分层缺陷耦合作用下复合材料开孔板在压缩载荷作用下的屈曲变形、分层扩展和承载能力的数值预测和分析。实验结果表明:含单一圆形预制分层缺陷的碳纤维增强环氧树脂复合材料开孔层合板试件呈现出初始受压、局部屈曲、整体屈曲后破坏的失效模式,预制分层缺陷对复合材料孔板压缩力学性能有显著影响,随着缺陷的增大压缩承载能力逐渐下降。双分层缺陷耦合作用数值分析表明:双分层缺陷进一步降低了复合材料孔板压缩承载能力,同侧非对称耦合分层缺陷结构的失效模式与单一缺陷结构基本一致,而异侧非对称耦合分层缺陷结构出现了双裂纹扩展,该裂纹扩展模式进一步削弱了孔板的压缩承载能力。
基于广义混合有限元的压电复合材料层合板的数值分析
王聿航, 卿光辉
2022, 39(6): 2987-2996. doi: 10.13801/j.cnki.fhclxb.20210707.003
摘要:
将纯弹性体的广义混合有限元法引入到压电材料的静力学分析中。由于采用了8节点六面体非协调实体单元对整体结构进行离散求解,摒弃了板壳理论中的诸多人为假设。非协调项的加入使该方法比同类协调元显示出更好的数值性能。本文方法将应力边界条件和位移边界条件同时考虑,并且求解过程中将层间应力和平面内应力分开处理,按每层的本构关系求解平面内应力,这样求得的层间应力和平面内应力都更加接近精确解。通过几个有代表性的层合板的数值算例说明了本文方法的精度,相较于传统的解析法和数值法,本文方法在适用性和有效性方面都具有优势。
CFRP防撞梁低速碰撞渐进损伤及优化
黄德明, 朱孙科, 王秋林, 孙永刚, 郑佳秋
2022, 39(6): 2997-3008. doi: 10.13801/j.cnki.fhclxb.20210702.002
摘要:
为预测和控制低速碰撞中碳纤维增强树脂复合材料(CFRP)防撞梁损伤程度,建立了含CFRP防撞梁的有限元显式动力学碰撞模型,防撞梁层内采用实体复合材料模拟其力学特性,采用Cohesive单元模拟CFRP层间相互作用。发展了基于Tsai-Wu张量理论的VUSDFLD子程序用于判定碰撞过程中复合材料单元6个方向损伤,失效单元按照突降退化模型进行刚度折减,利用Johnson-Cook本构模型模拟铝合金强化层碰撞损伤,其失效单元采用线性连续退化模型进行刚度折减。通过[±45°/45°/0°/0°/90°/−45°/0°/0°/90°]s和[±45°/45°/0°/0°/0°/−45°/90°/−45°/0°/0°/90°]s两种CFRP防撞梁铺层结构碰撞结果与含铝合金强化层CFRP防撞梁碰撞结果对比可知,在层内单元数相同的情况下,CFRP防撞梁增设4层复合材料铺层后,失效单元数量降低明显;碰撞过程中含铝合金强化层的多材料混合防撞梁结构在质量基本不变的情况下,失效单元数显著降低。结果表明,所开发的VUSDFLD子程序能够用于复合材料防撞梁的显式动力学碰撞损伤模拟,基于碰撞损伤的计算结果为CFRP防撞梁的结构设计提供参考。
铝合金-CFRP液氮温度下弯曲强度的强化研究
程飞, 胡云森
2022, 39(6): 3009-3019. doi: 10.13801/j.cnki.fhclxb.20210616.003
摘要:
随着铝合金-碳纤维增强树脂复合材料(CFRP)逐渐应用到火箭推进器,其低温环境下的粘结性能强化已引起广泛关注。针对环氧接头潜在的粘接界面缺陷,采用阳极氧化和砂化分别处理铝合金和CFRP板表面制得多孔表面。采用树脂预涂(RPC)技术消除铝合金孔道根部原有的大分子环氧树脂空穴缺陷,也可通过RPC技术将增强纤维碳纳米管浸渍到铝合金表面的孔道中,形成准Z方向的纤维桥联,进一步提高环氧接头的粘结强度。三点弯曲试验(3-P-B)结果表明,室温下处理后的铝合金-CFRP弯曲强度提高了14.6%,液氮温度下弯曲强度提高了27.6%。经过表面处理后,CFRP在室温和液氮温度下的破坏模式均由较弱的界面脱胶破坏转变为主体结构的断裂破坏。总之,系列有效的处理方法可为低温液体燃料箱的工业应用提供另一种参考。
圆柱壳三次非均匀有理B样条曲线变角度铺放轨迹设计及屈曲特性
曹忠亮, 林国军, 董明军, 韩振华, 曹清林
2022, 39(6): 3020-3028. doi: 10.13801/j.cnki.fhclxb.20210622.003
摘要:
基于三次非均匀有理B样条(NURBS)曲线,开展纤维变角度圆柱壳设计及其屈曲特性研究。首先,以三次NURBS曲线定义纤维变角度铺放参考轨迹,确定了变角度铺层的表示方式。其次,以纤维变角度铺层±<25(0.4)(0.8)75>和±<65(0.4)(0.8)10>为例,展示了三次NURBS曲线轴向平移铺层和周向平移铺层在圆柱壳上的纤维角度分布情况。然后,用纤维变角度铺层代替定刚度圆柱壳中的±45°铺层,对变刚度圆柱壳进行线性屈曲分析,对轴向平移圆柱壳、周向平移圆柱壳和定刚度圆柱壳进行对比。最后,在曲率半径约束下,研究权因子对圆柱壳屈曲性能的影响。结果表明:周向平移圆柱壳有着更好的屈曲性能;在曲率半径约束下,通过确定起始角、终止角和控制点参数得到屈曲性能优异的变刚度圆柱壳,而改变权因子能使变刚度圆柱壳的屈曲载荷再次提高。