基于X-CT的高温后再生保温混凝土损伤分析

Damage analysis of meso-scale recycled aggregate thermal insulation concrete based on X-CT after high temperature

  • 摘要: 火灾的发生往往会导致混凝土材料微细观结构的损伤劣化,体现在水化物分解、孔隙结构粗化、热开裂和水汽压力升高诱致开裂等,继而导致材料宏观力学性能及耐久性的下降。轻质高强、内部多孔、高热稳定的玻化微珠(GHB)的细观调控功能可实现混凝土耐高温性能的提升。为了研究受高温作用的再生保温混凝土(RATIC)内部细观结构及裂纹变化特征,本研究首先对高温作用后的RATIC开展了立方体抗压强度试验和CT扫描试验,之后利用基于改进的自适应阈值法和区域生长法的图像分割算法,建立了基于真实结构的RATIC细观模型,分析了不同GHB及再生骨料(RCA)掺量的RATIC试件随温度变化时其内部微裂纹的孕育、萌生、发展及贯通过程。并对RATIC破坏形态与CT结果进行了对比分析。研究结果表明:GHB对裂缝的延伸有显著阻断作用,为蒸汽压提供了释放通道,缓解了砂浆区域、孔隙边界处的开裂,减缓了热量的传播,提升了混凝土抗热致损伤性能。

     

    Abstract: The occurrence of fire often leads to the damage and deterioration of the micro-meso-structure of concrete materials, which is reflected in the decomposition of hydrates, the coarsening of pore structure, thermal cracking, and the cracking induced by the increase of water vapor pressure, which in turn lead to the decline of the macroscopic mechanical properties and durability of materials. The meso-regulatory function of the lightweight, high-strength, internally porous, and highly thermally stable glazed hollow beads (GHB) can improve the high-temperature resistance of concrete. In order to study the characteristics of the internal meso-scale structure and crack evolution of recycled aggregate thermal insulation concrete (RATIC) subjected to high temperature, the cube compressive strength test and CT test were firstly carried out on RATIC after high temperature. Then the RATIC meso-scale model was established based on the real structure by the improved image segmentation algorithm based on the adaptive threshold method and the regional growth method (IISA). The process of initiation, development and coalescence of internal microcracks in RATIC with different GHB and recycled coarse aggregate (RCA) contents with temperature change were studied. Furthermore, the failure patterns of RATIC under simulated conditions and CT re-sults were analyzed by contrast, which show that GHB can significantly block the extension of cracks, provide a release channel for vapor pressure, alleviate cracks in the mortar area and pore boundaries, slow down the spread of heat in the concrete. It has a positive effect on improving the heat-induced damage resistance of concrete.

     

/

返回文章
返回