细观结构参量对推进剂力学性能影响的数值研究

Numerical investigations on mesoscopic structure parameters affecting mechanical responses of propellant

  • 摘要: 为了更好地理解并预测复合固体推进剂组分、界面对其宏观力学性能的影响,在细观层次上建立了考虑界面和颗粒形貌的代表性体积单元(Representative volume elements,RVE)计算模型,通过引入内聚力模型(Cohesive zone model,CZM)研究了界面刚度、强度及最大失效位移对推进剂力学性能的影响,并对比分析了颗粒形貌与界面对其力学性能的贡献。研究结果表明:界面刚度为0.004~400 MPa/mm时,推进剂初始模量从0.67 MPa提升到3.67 MPa;界面强度从0.05 MPa提高至30 MPa时,推进剂拉伸强度从0.15 MPa 提高到了0.76 MPa,即界面刚度增加对推进剂初始模量的提高有限,而界面强度对其拉伸强度的提高非常显著;然而,较高的界面强度可能导致细观结构出现“损伤局部化”,从而降低延伸率。相对于界面对推进剂实际力学性能的提升,颗粒级配、形状的作用显得较小,说明界面是决定推进剂拉伸性能的主要因素之一。最后基于以上分析结果,对另一种推进剂在不同应力下的蠕变性能进行了预测,发现蠕变断裂时间的对数与恒定应力满足线性关系。

     

    Abstract: A computational representative volume element (RVE) framework considering interface, as well as particle morphology, was adopted to provide a better understanding and prediction of the existing links between the behaviors of contents, interface and the macroscopic mechanical responses of composite solid propellants. A cohesive zone model (CZM) was taken into account to study the significance of interface stiffness, strength and critical displacement, along with the relative contribution of particle morphology and interface, on the macroscopic mechanical properties of the propellant. Results indicate that the initial modulus of propellant increases from 0.67 MPa to 3.67 MPa as the interface stiffness varies between 0.004 MPa/mm and 400 MPa/mm, while the tensile strength of propellant increases from 0.15 MPa to 0.76 MPa when the interface strength changes from 0.05 MPa to 30 MPa, which implies that an increase in the interface stiffness has a limited improvement over the initial modulus of the propellant. In comparison, the interface strength improves its tensile strength remarkably. However, higher interfacial strength may lead to “damage localization” in the microstructure, thus reducing the elongation of propellant. The different behaviors observed on macroscopic view are rather due to interface than to the morphology of particles; all of the results exhibit that the interface is one of the major determining factors affecting the tensile properties of the propellant. Finally, based on the previous analyses, the creep behaviors of another propellant were predicted under various stress levels. It is found that the logarithm of creep rupture time is linear with constant stress.

     

/

返回文章
返回