钻孔分层损伤对复合材料层合孔板压缩力学行为的影响

安泽君, 曹东风, 郑凯东, 胡海晓, 李书欣

安泽君, 曹东风, 郑凯东, 等. 钻孔分层损伤对复合材料层合孔板压缩力学行为的影响[J]. 复合材料学报, 2022, 39(6): 2974-2986. DOI: 10.13801/j.cnki.fhclxb.20210902.005
引用本文: 安泽君, 曹东风, 郑凯东, 等. 钻孔分层损伤对复合材料层合孔板压缩力学行为的影响[J]. 复合材料学报, 2022, 39(6): 2974-2986. DOI: 10.13801/j.cnki.fhclxb.20210902.005
AN Zejun, CAO Dongfeng, ZHENG Kaidong, et al. Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2974-2986. DOI: 10.13801/j.cnki.fhclxb.20210902.005
Citation: AN Zejun, CAO Dongfeng, ZHENG Kaidong, et al. Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2974-2986. DOI: 10.13801/j.cnki.fhclxb.20210902.005

钻孔分层损伤对复合材料层合孔板压缩力学行为的影响

基金项目: 先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金 (XHT2020-002);中央高校基本科研业务费专项资金(2020III066GX);湖北省对外科技合作项目(2013BHE008)
详细信息
    通讯作者:

    曹东风,博士,副研究员,研究方向为先进复合材料计算力学 E-mail: cao_dongf@whut.edu.cn

    胡海晓,博士,副教授,研究方向为复合材料材料-工艺-结构一体化应用 E-mail: yiming9008@126.com

  • 中图分类号: TB330.1

Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates

  • 摘要: 钻孔分层损伤对复合材料层合孔板的承载能力和失效模式有着显著的影响。通过实验和仿真相结合的方式,开展单一预制分层缺陷下、双分层缺陷同侧耦合及双分层缺陷异侧耦合作用下复合材料层合孔板的压缩承载能力及失效模式的研究。通过预埋聚四氟乙烯薄膜,制备了含单一圆形预制分层缺陷的碳纤维增强树脂复合材料开孔板试件,采用浸没式超声C扫和数字图像DIC技术分别对复合材料层合板损伤和法向变形进行检测,研究含不同尺寸预制分层开孔层合板在压缩载荷下的分层扩展及失效变形特征,进而揭示分层缺陷大小对其承载能力的影响机制。构建基于内聚力单元方法的含孔复合材料层合板数值模型,对比实验修正模型,探索了单一预制分层缺陷下碳纤维增强树脂复合材料开孔板的损伤扩展机制,并在此模型基础上开展双分层缺陷耦合作用下复合材料开孔板在压缩载荷作用下的屈曲变形、分层扩展和承载能力的数值预测和分析。实验结果表明:含单一圆形预制分层缺陷的碳纤维增强环氧树脂复合材料开孔层合板试件呈现出初始受压、局部屈曲、整体屈曲后破坏的失效模式,预制分层缺陷对复合材料孔板压缩力学性能有显著影响,随着缺陷的增大压缩承载能力逐渐下降。双分层缺陷耦合作用数值分析表明:双分层缺陷进一步降低了复合材料孔板压缩承载能力,同侧非对称耦合分层缺陷结构的失效模式与单一缺陷结构基本一致,而异侧非对称耦合分层缺陷结构出现了双裂纹扩展,该裂纹扩展模式进一步削弱了孔板的压缩承载能力。
    Abstract: The delamination damage has significant influence on the bearing capacity and failure mode of open-hole laminates. By combining experiment and simulation, the compression bearing capacity and failure mode of composite open-hole laminates with single prefabricated laminated defects, two laminated coupling defects on the same side and double laminated coupling defects on the different side were studied. Through the embedded polytetrafluoroethylene (PTFE) membrane, the open-hole laminate containing single prefabricated delamination defects was prepared. By means of immersion ultrasonic C scan and digital image DIC technique, the damage evolution and normal deformation were characterized and monitored. The delamination propagation behavior and failure deformation characteristics of laminates with various defect sizes under compression loading were studied, and the influence mechanism of the size of the delamination defects on the bearing capacity of the laminates was revealed. A numerical model of open-hole laminate was established based on the cohesion element method. The damage propagation mechanism of open-hoe laminate with single prefabricated laminated defects was explored. Based on the optimized model, the numerical prediction and analysis of the buckling deformation, delamination expansion and bearing capacity of the open-hole laminate with two delaminated coupling defects were carried out. The experimental results show that the specimen with single delamination defect presents the initial compression, local buckling and overall buckling. The delamination size has significant impact on the compressive capability, which decreases with the increasing of delamination size. The numerical results of two delaminated defects show the second delaminated defect further reduces the compressive bearing capacity. The failure model of laminate with two coupling defects on the same sides is similar with that of laminates with single prefabricated defect; while, double-crack propagation occurs in the asymmetrical coupled laminated structure on the opposite side, which further weakens the compression bearing capacity of open-hole laminates.
  • 图  1   碳纤维增强环氧树脂(CF/EP)预浸料固化工艺

    Figure  1.   Curing process of carbon fiber reinforced epoxy resin (CF/EP) prepreg

    图  2   单一预制分层缺陷的CF/EP开孔层合板模型示意图

    Figure  2.   Schematic diagram of CF/EP open-hole laminates with a single prefabricated lamination defect

    L0—Total length of laminate; L1—Length of clamping end; b—Width of laminate; D—Diameter of prefabricated defect; d—Diameter of open-hole; t—Thickness of laminates; PTFE—Polytetrafluoroethylene

    图  3   含单一预制分层缺陷CFRP开孔层合板制备流程

    Figure  3.   Fabrication process of CFRP open-hole laminates with a single prefabricated lamination defect

    图  4   实验加载装置

    Figure  4.   Experimental loading device

    图  5   含圆形预制分层缺陷CF/EP开孔层合板有限元模型

    Figure  5.   Finite element model of CF/EP open-hole laminates with circular prefabricated delamination defects

    图  6   双线性内聚力单元损伤模型示意图

    Figure  6.   Diagram of bilinear cohesive damage model

    Ti—Traction force of laminates during type i fracture; Kp—Penalty stiffness; δi—Displacement response under type i traction; δi0—Crack opening displacement corresponding to the maximum stress; σmax—Maximum normal stress value; τmax—Maximum tangential stress

    图  7   单一圆形预制分层缺陷下的CF/EP开孔层合板压缩承载能力

    Figure  7.   Compressive failure load of CF/EP open-hole laminates with single circular precast delamination defect

    图  8   含单一圆形预制分层缺陷的CF/EP开孔层合板压缩位移-载荷曲线(工况D-20)

    Figure  8.   Compression displacement-load curves of CF/EP open-hole laminates with single circular prefabricated laminated defects (Condition D-20)

    图  9   单一圆形预制分层缺陷下CF/EP开孔层合板的压缩屈曲过程(工况D-20)

    Figure  9.   Compression and buckling process of CF/EP open-hole laminates with single circular prefabricated lamination defects (Condition D-20)

    图  10   单一圆形预制分层缺陷下CF/EP开孔层合板压缩屈曲过程面法向位移云图(工况D-20)

    Figure  10.   Normal displacement cloud image of effective strain maps compression and buckling process of CF/EP open-hole laminates with single circular prefabricated (Condition D-20)

    图  11   单一圆形预制分层缺陷CF/EP开孔层合板压缩屈曲过程变形示意图

    Figure  11.   Deformation diagram of single circular prefabricated laminated CF/EP open-hole laminates during compression and buckling

    图  12   无缺陷CF/EP开孔层合板压缩加载过程(工况I-0)

    Figure  12.   Compression loading process of CF/EP open-hole laminates without defects (Condition I-0)

    图  13   单一圆形预制分层缺陷CF/EP开孔层合板压缩屈曲位移-载荷曲线

    Figure  13.   Compression buckling displacement-load curves of single circular prefabricated laminated CF/EP open-hole laminates

    FEA—Finite element analysis

    图  14   不同工况下CF/EP开孔层合板实验及数值模拟组的压缩失效载荷

    Figure  14.   Compression failure loads of CF/EP experimental and numerical simulation groups under different conditions

    图  15   含单一圆形预制分层缺陷CF/EP开孔层合板压缩屈曲数值模拟结果(工况D-20)

    Figure  15.   Numerical simulation results of compression buckling of CF/EP open-hole laminates with single circular prefabricated laminated defects (Condition D-20)

    图  16   耦合双分层缺陷CF/EP开孔层合板模型示意图

    Figure  16.   Schematic diagram model of CF/EP open-hole laminates with coupling delamination double defects

    T—Ipsilateral plane of symmetry; Y—Opposite side of the plane of symmetry

    图  17   双缺陷耦合作用下CF/EP开孔层合板变形示意图(D-20-FEA-T)

    Figure  17.   Deformation diagram of CF/EP open-hole laminates under the coupling action of double defects (D-20-FEA-T)

    图  18   双缺陷耦合作用下CF/EP开孔层合板变形示意图(D-20-FEA-Y)

    Figure  18.   Deformation diagram of CF/EP open-hole laminates under the coupling action of double defects (D-20-FEA-Y)

    图  19   CF/EP开孔层合板的极限压缩载荷

    Figure  19.   Ultimate compression load of CF/EP open-hole laminates

    表  1   CF/EP开孔层合板详细尺寸

    Table  1   Detailed dimensions of CF/EP open-hole laminates

    TypeL0/mmL1/mmb/mmD/mmd/mmt/mm
    I-0 135 30 35 6 2.6
    D-10 135 30 35 10 6 2.6
    D-15 135 30 35 15 6 2.6
    D-20 135 30 35 20 6 2.6
    Notes: I—Defect-free porous composite plate; The number after the letter D is the diameter of the damaged area.
    下载: 导出CSV

    表  2   CF/EP预浸料材料属性及参数

    Table  2   Material properties and parameters of CF/EP prepreg

    ParameterValue
    E11/MPa 144700
    E22/MPa 9650
    E33/MPa 9650
    G12/MPa 5800
    G13/MPa 5800
    G23/MPa 4800
    ν12 0.3
    ν13 0.3
    ν23 0.45
    Notes: E—Elastic modulus; ν—Poisson's ratio; G—Shear modulus; 1—Direction of fiber; 2—Direction of matrix; 3—Thickness direction of layer; Xt—Longitudinal tensile strength; Xc—Longitudinal compressive strength; Yt—Transverse tensile strength; Yc—Transverse compressive strength; S—In-plane shear strength.
    下载: 导出CSV

    表  3   双缺陷耦合作用下CF/EP开孔层合板压缩屈曲数值模拟结果(D-20-FEA-T)

    Table  3   Numerical simulation results of compression buckling of CF/EP open-hole laminates under the coupling action of double defects (D-20-FEA-T)

    State1234
    Sublaminate 1
    Sublaminate 2
    下载: 导出CSV

    表  4   双缺陷耦合作用下CF/EP开孔层合板压缩屈曲数值模拟结果(D-20-FEA-Y)

    Table  4   Numerical simulation results of compression buckling of CF/EP open-hole laminates under the coupling action of double defects (D-20-FEA-Y)

    State12345
    Sublaminate 1
    Sublaminate 3
    下载: 导出CSV
  • [1]

    FREITAS M D, CARVALHO R D. Residual strength of a damaged laminated CFRP under compressive fatigue stresses[J]. Composites Science & Technology,2006,66(3-4):373-378.

    [2]

    TAFRESHI A, OSWALD T. Global buckling behaviour and local damage propagation in composite plates with embedded delaminations[J]. International Journal of Pressure Vessels& Piping,2003,80(1):9-20.

    [3]

    AUERSCH L, SCHMID G. A torque and thrust prediction model for drilling of composite materials[J]. Composites Part A: Applied Science & Manufacturing,2005,36(1):83-93.

    [4]

    KHASHABA U A, EL-SONBATY I A, SELMY A I, et al. Machinability analysis in drilling woven GFR/epoxy composites: Part I-Effect of machining parameters[J]. Composites Part A: Applied Science & Manufacturing,2010,41(3):391-400.

    [5]

    DUAN Q F, LI S X, SONG P H, et al. Effect of drilling-induced delamination on buckling behavior of open hole composite laminate specimens under compressive loading[J]. Strength of Materials,2019,51:624-632.

    [6]

    HAN P K, WHITEHEAD R S, KAUTZ E F. Damage tolerance certification methodology for composite structures[C]. Eighth DOD(NASA)FAA Conference on Fibrous Compo-sites in Structural Design, Part 2. NASA. Langley Research Center, 1990.

    [7]

    MCGOWAN D M, AMBUR D R. Structural response of composite sandwich panels impacted with and without compression loading[J]. Journal of Aircraft,1971,36(3):596-602.

    [8]

    KARIMI N Z, HEIDARY H, FOTOUHI M, et al. Experimental analysis of GFRP laminates subjected to compression after drilling[J]. Composite Structures, 2017, 169: 144–152.

    [9]

    OLSSON R. Analytical prediction of large mass impact damage in composite laminates[J]. Composites Part A: Applied Science & Manufacturing,2001,32(9):1207-1215.

    [10] 王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4):757-762. DOI: 10.3321/j.issn:1000-6893.2009.04.029

    WANG Xueming, XIE Fuyuan, LI Min, et al. Effect of complex structure on manufacturing defects of composite materials formed by auto-claves[J]. Acta Aeronautica et Astronautica Sinica,2009,30(4):757-762(in Chinese). DOI: 10.3321/j.issn:1000-6893.2009.04.029

    [11]

    KATERELOS D G, PAIPETIS A, KOSTOPOULOS V. A simple model for the prediction of the fatigue delamination growth of impacted composite panels[J]. Fatigue & Fracture of Engineering Materials& Structures,2004,27(10):911-922.

    [12]

    ISMAIL S O, OJO S O, DHAKAL H N. Thermo-mechanical modelling of FRP cross-ply composite laminates drilling: Delamination damage analysis[J]. Composites Part B: Engineering,2017,108:45-52. DOI: 10.1016/j.compositesb.2016.09.100

    [13] 张明辉, 周储伟, 鲁浩. 碳纤维复合材料单向板钻孔分层损伤的数值模拟[J]. 机械工程材料, 2019, 43(9):73-77.

    ZHANG Minghui, ZHOU Chuwei, LU Hao. Numerical simulation of delamination dam-age of carbon fiber composite plate in borehole[J]. Materials for Mechanical Engineering,2019,43(9):73-77(in Chinese).

    [14] 唐荆, 陈啸, 杨科. 碳纤维复合材料开孔层合板压缩损伤预测和模型比较[J]. 玻璃钢/复合材料, 2019(10):33-39.

    TANG Jing, CHEN Xiao, YANG Ke. Compression damage prediction and model comparison of carbon fiber compo-site open-hole laminates[J]. Fiber Reinforced Plastics/Composites,2019(10):33-39(in Chinese).

    [15] 温泉, 郭东明, 高航, 等. 碳纤维/环氧树脂复合材料制孔损伤综合评价方法[J]. 复合材料学报, 2016, 33(2):265-272.

    WEN quan, GUO Dongming, GAO Hang, et al. Comprehensive evaluation method for hole damage of carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2016,33(2):265-272(in Chinese).

    [16] 卓越, 关志东, 周睿, 等. 复合材料开孔层板压缩渐进损伤试验[J]. 复合材料学报, 2015, 32(6):1762-1768.

    ZHUO Yue, GUAN Zhidong, ZHOU Rui, et al. Experimental study on progressive damage of composite laminates by compression[J]. Acta Materiae Compositae Sinica,2015,32(6):1762-1768(in Chinese).

    [17]

    OJO S O, ISMAIL S O, PAGGI M, et al. A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation[J]. Composites Part B: Engineering, 2017, 124: 207–217.

    [18] 姜晓伟, 朱书华, 李国弘, 等. 含分层缺陷复合材料层合板分层扩展研究[J]. 航空计算技术, 2014, 44(5):73-76. DOI: 10.3969/j.issn.1671-654X.2014.05.018

    JIANG Xiaowei, ZHU Shuhua, LI Guohong,et al. Research on layered extension of composite laminates with layered defects[J]. Aeronautical Computing Technology,2014,44(5):73-76(in Chinese). DOI: 10.3969/j.issn.1671-654X.2014.05.018

    [19]

    NILSSON K F, ASP L E, ALPMAN J E, et al. Delamination buckling and growth for delaminations at different depths in a slender composite panel[J]. International Journal of Solids & Structures, 2001, 38(17): 3039-3071.

    [20] 刘雅玲, 王康康, 赵丽滨. 含预制分层复合材料层合板的压缩失效行为研究[C]//北京力学会第二十三届学术年会会议论文集. 北京: 北京力学会, 2017: 2.

    LIU Yaling, WANG Kangkang, ZHAO Libin. Study on compression failure behavior of laminated plates containing precast laminated composites[C]//Proceedings of the 23rd Annual Conference of Beijing Society of Mechanics. Beijing: Beijing Society of Mechanics, 2017: 2(in Chinese).

    [21]

    RHEAD A T, BUTLER R, HUNT G W. Compressive strength of composite laminates with delamination-induced interaction of panel and sublaminate buckling modes[J]. Composite Structures, 2017, 171: 326-334.

    [22]

    ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M—17[S]. West Conshohocken: ASTM International, 2017.

    [23]

    ASTM. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M—16[S]. West Conshohocken: ASTM International, 2016.

    [24]

    ASTM. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518/D3518M—18[S]. West Conshohocken: ASTM International, 2018.

    [25]

    ELICES M, GUINEA G V, GÓMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics,2002,69(2):137-163. DOI: 10.1016/S0013-7944(01)00083-2

    [26]

    WANG R G, ZHANG L, ZHANG J, et al. Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method[J]. Computational Materials Science, 2010, 50(1): 20-31.

    [27]

    LIU P F, GU Z P, PENG X Q, et al. Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression[J]. Composite Structures, 2015, 131: 975-986.

    [28]

    TURON A, CAMANHO P P, COSTA J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness[J]. Composite Structures,2010,92(8):1857-1864. DOI: 10.1016/j.compstruct.2010.01.012

    [29]

    MOURA M F S F, GONÇALVES J P M, MARQUES A T, et al. Prediction of compressive strength of carbon-epoxy laminates containing delamination by using a mixed-mode damage model[J]. Composite Structures,2000,50(2):151-157. DOI: 10.1016/S0263-8223(00)00091-X

    [30]

    LAKSHMINARAYANA H V, BOUKHILI R, GAUVIN R. Impact response of laminated composite plates: Prediction and verification[J]. Composite Structures, 1994, 28(1): 61-72.

    [31]

    HÜHNE C, ZERBST A K, KUHLMANN G, et al. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures,2010,92(2):189-200. DOI: 10.1016/j.compstruct.2009.05.011

    [32] 张延林, 李秋阳. 碳布增强木质层合板的有限元渐进损伤分析[J]. 沈阳工业大学学报, 2017, 39(1):22-27.

    ZHANG Yanlin, LI Qiuyang. Finite element progressive damage analysis of carbon fabric reinforced wood laminates[J]. Journal of Shenyang University of Technology,2017,39(1):22-27(in Chinese).

    [33]

    LSTC. Keyword User’s Manual, Volume II[M]. Livermore: Version 11 R11.0. 0, 2018.

    [34]

    HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science & Technology,2000,60(2):273-281.

  • 期刊类型引用(2)

    1. 张永文,杨郁,杨倩倩,李艳安,禹兴海. 生物炭/聚乙二醇复合相变材料的制备及其性能研究. 化学工程师. 2024(06): 6-11 . 百度学术
    2. 江慧珍,罗凯,王艳,费华,吴登科,叶卓铖,曹雄金. 废弃生物质复合相变材料的构建与应用. 化工进展. 2024(07): 3934-3945 . 百度学术

    其他类型引用(6)

图(19)  /  表(4)
计量
  • 文章访问数:  1322
  • HTML全文浏览量:  584
  • PDF下载量:  121
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-05-16
  • 修回日期:  2021-07-16
  • 录用日期:  2021-08-13
  • 网络出版日期:  2021-09-02
  • 刊出日期:  2022-05-31

目录

    /

    返回文章
    返回