基于AC729RTM聚酰亚胺复合材料的发动机舱尾区结构研制与验证

Manufacturing and verification research for engine compartment rear structure based on AC729RTM polyimide composites

  • 摘要: 针对某飞行器钛合金发动机舱尾区结构在应用中存在的结构变形、重量问题及高温环境需求,以耐温等级为350℃的AC729RTM聚酰亚胺树脂基复合材料为设计选材,开展了某飞机发动机舱尾区结构复合材料代替钛合金结构设计,建立了有限元分析模型对复合材料发动机舱尾区结构进行参数分析,最后获取了合理的结构设计参数,最后采用树脂传递模塑成型工艺(RTM)进行了复合材料发动机舱尾区结构制备,同时从静强度试验、结构变形和结构重量三个角度进行了验证评价。结果表明:聚酰亚胺复合材料发动机舱尾区结构经无损检测制件仅局部区域存在小面积孔隙(孔隙率<2%),整个制件的内部质量及外观状态良好;经静强度试验验证,发动机舱尾区结构除局部小范围脱粘外,未出现明显损伤及破坏,符合室温静强度要求;复合材料发动机舱尾区结构外形偏差控制在–0.808~0.664 mm,相比于钛合金结构取得了改善;结构质量相比钛合金减重约27.5%,取得了良好的减重收益。

     

    Abstract: In view of the structural deformation, weight and high-temperature requirements in the application of titanium engine compartment rear structure of a certain aircraft, composite structural design was carried out instead of titanium alloy for aircraft engine compartment rear structure, taking the AC729RTM polyimide composite with temperature resistance of 350℃ as design material. The finite element (FE) model of composite engine compartment rear structure was generated to perform parameter analysis and reasonable structural design parameters were obtained. The composite engine compartment rear structure was fabricated by resin transfer molding process (RTM). Finally, verification and evaluation were carried out from static strength test, structural deformation and weight. The results show that the internal quality and appearance of polyimide composite engine compartment rear structure are in good condition except for pores of small areas (porosity<2%) through non-destructive inspection. There are no obvious damages in engine compartment rear structure except for debonding of small areas through verification of static strength test, and satisfied the requirement of room temperament strength. The shape deviation of composite engine compartment rear structure is controlled in –0.808-0.664 mm and is better than titanium alloy structural. Compared with titanium alloy structural, the mass is reduced by 27.5%, achieving good benefits.

     

/

返回文章
返回