FAN Kefan, LI Kun, YANG Zhijian, et al. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939-3949. DOI: 10.13801/j.cnki.fhclxb.20220907.005
Citation: FAN Kefan, LI Kun, YANG Zhijian, et al. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939-3949. DOI: 10.13801/j.cnki.fhclxb.20220907.005

Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties

More Information
  • Received Date: July 28, 2022
  • Revised Date: August 25, 2022
  • Accepted Date: August 28, 2022
  • Available Online: September 07, 2022
  • MXenes show unique advantages in electromagnetic shielding materials due to their high electrical conductivity, abundant active sites (such as —OH, —F, —O), electrochemical behavior, and excellent hydrophilicity. However, hydrogels with both excellent mechanical strength and high electromagnetic shielding efficiency remain to be further studied. Meanwhile, transparent hydrogels often lack the ability to filter ultraviolet light, which greatly limits the application of hydrogel materials. In this work, PAAm-PHEMA/PAA-Fe3+-MXene hydrogels with double shielding mechanism were prepared by using acrylamide (AAm) copolymer hydroxyethyl methacrylate (HEMA) chemical cross-linking as the first network, and polyacrylic acid (PAA)-Fe3+ metal ion complexation as the second network, and two-dimensional MXene as conductive nanofillers. The presence of MXene and Fe3+ makes the hydrogel possess both electromagnetic and UV shielding properties. The structure and three-dimensional network of the composite hydrogel were confirmed by FTIR, SEM and EDS. The as-prepared double-network hydrogel exhibits high mechanical strength (320.1 kPa), high stretchability (1786%), and good electrical conductivity (3.8 S/m). In addition, the composite hydrogel also exhibits excellent UV shielding ability, with transmittances of 0% and 79.2% at characteristic wavelengths of 365 and 550 nm, respectively. At the same time, the composite hydrogel can obtain excellent electromagnetic-interference (EMI) shielding effect of more than 36 dB in the X-band, strong adhesion to various substrates, rapid self-healing performance and high shape adaptability. This work provides a flexible and highly tunable dual-shielding mechanism hydrogel network design and large-scale facile fabrication of new ideas, showing great application prospects in flexible wearable materials.
  • [1]
    胡魁, 王映月, 王昊昱, 等. 高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用[J]. 复合材料学报, 2022, 40(2):1060-1070. DOI: 10.13801/j.cnki.fhclxb.20220322.003

    HU Kui, WANG Yingyue, WANG Haoyu, et al. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica,2022,40(2):1060-1070(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220322.003
    [2]
    MA C, MA M G, SI C, et al. Flexible MXene-based composites for wearable devices[J]. Advanced Functional Materials,2021,31(22):2009524. DOI: 10.1002/adfm.202009524
    [3]
    WANG S X, LIU Q R, FENG S J, et al. A water-retaining, self-healing hydrogel as ionic skin with a highly pressure sensitive properties[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,104:318-329. DOI: 10.1016/j.jtice.2019.09.005
    [4]
    李晓彬. 自修复的MXene复合水凝胶的制备与传感性能研究[D]. 北京: 北京化工大学, 2021.

    LI Xiaobin. Preparation and sensing properties of self-healing MXene composite hydrogels[D]. Beijing: Beijing University of Chemical Technology, 2021(in Chinese).
    [5]
    LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32(15):1901924. DOI: 10.1002/adma.201901924
    [6]
    IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883. DOI: 10.1002/adfm.202000883
    [7]
    LI S, ZHOU X, DONG Y, et al. Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels[J]. Macromolecular Rapid Communications,2020,41(23):2000444. DOI: 10.1002/marc.202000444
    [8]
    MIAO M, LIU R, THAIBOONROD S, et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(9):3120-3126. DOI: 10.1039/C9TC06361G
    [9]
    YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. DOI: 10.1002/adma.201906769
    [10]
    XIA Y, GAO W, GAO C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials,2022,32(42):2204591. DOI: 10.1002/adfm.202204591
    [11]
    ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. DOI: 10.1021/acs.chemmater.7b02847
    [12]
    TONDERA C, AKBAR T F, THOMAS A K, et al. Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping[J]. Small,2019,15(27):e1901406. DOI: 10.1002/smll.201901406
    [13]
    HIRSCH M, CHARLET A, AMSTAD E. 3D printing of strong and tough double network granular hydrogels[J]. Advanced Functional Materials,2020,31(5):2005929.
    [14]
    张光照. 基于脲基嘧啶酮四重氢键超分子水凝胶的设计及其刺激响应性能研究[D]. 广州: 华南理工大学, 2019.

    ZHANG Guangzhao. Design and stimuli-responsive properties of supramolecular hydrogels based on ureidopyrimidinone quadruple hydrogen bonds[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
    [15]
    JEON I, CUI J, ILLEPERUMA W R, et al. Extremely stretchable and fast self-healing hydrogels[J]. Advanced Materials,2016,28(23):4678-4683. DOI: 10.1002/adma.201600480
    [16]
    鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2021, 39(12):5901-5911. DOI: 10.13801/j.cnki.fhclxb.20211119.004

    LU Chengcheng, YU Zhenkun, YANG Yuanyuan, et al. Preparation and properties of polyacrylic acid-Al3+/chitosan composite double network hydrogels[J]. Acta Materiae Compositae Sinica,2021,39(12):5901-5911(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211119.004
    [17]
    LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. DOI: 10.1002/aelm.201600255
    [18]
    ZHAO H, HAO S, FU Q, et al. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors[J]. Chemistry of Materials,2022,34(11):5258-5272. DOI: 10.1021/acs.chemmater.2c00934
    [19]
    GE G, ZHANG Y Z, ZHANG W, et al. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach[J]. ACS Nano,2021,15(2):2698-2706. DOI: 10.1021/acsnano.0c07998
    [20]
    DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions[J]. Advanced Materials,2019,31(43):1902432. DOI: 10.1002/adma.201902432
    [21]
    CHEN W, BU Y, LI D, et al. Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection[J]. Journal of Materials Chemistry C,2020,8(3):900-908. DOI: 10.1039/C9TC05797H
    [22]
    WANG Y, HUANG F, CHEN X, et al. Stretchable, conductive, and self-healing hydrogel with super metal adhesion[J]. Chemistry of Materials,2018,30(13):4289-4297. DOI: 10.1021/acs.chemmater.8b01260
    [23]
    QIAO H, QI P, ZHANG X, et al. Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors[J]. ACS Applied Materials & Interfaces,2019,11(8):7755-7763. DOI: 10.1021/acsami.8b20380
  • Related Articles

    [1]ZHANG Bei, CHAO Min, LI Xiaodong, YANG Xuexue, LUO Chunjia, YAN Luke. Preparation and properties of flexible MXene-carbon black/polyimide electromagnetic shielding composite films with harsh environment resistance[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3095-3107.
    [2]LI Yang, LI Bin, LI Zhongming, ZHAO Yilin, KONG Shuoshuo, HAN Jiahong. Preparation and EMI shielding properties of three-dimensional hollow MXene-rGO-CNT composites[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 937-948. DOI: 10.13801/j.cnki.fhclxb.20240518.002
    [3]TANG Jie, LI Xiang. Preparation of high-strength MXene/PPy@BC composite films and their electromagnetic shielding properties[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 395-402. DOI: 10.13801/j.cnki.fhclxb.20240320.005
    [4]SHI Ouling, TAN Yanyan, WU Xiao, LONG Xuebin, QIN Shuhao. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. DOI: 10.13801/j.cnki.fhclxb.20231205.004
    [5]CHU Na, LUO Chunjia, CHAO Min, YANG Xuexue, YAN Luke. Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4146-4159. DOI: 10.13801/j.cnki.fhclxb.20231214.002
    [6]MEI Ting, RAN Ya, CAI Xiongrui, MENG Shiyun, LI Xiaodan. Research on electromagnetic shielding materials based on MXene[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2280-2293. DOI: 10.13801/j.cnki.fhclxb.20231019.005
    [7]LI Mingzhan, LI En, PAN Yamin, LIU Xianhu. Research and application of electromagnetic shielding conductive coating[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 572-591. DOI: 10.13801/j.cnki.fhclxb.20230530.003
    [8]ZHANG Yan, MA Zhonglei, LI Zhen, JING Jiayao, SHAO Liang. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415. DOI: 10.13801/j.cnki.fhclxb.20230109.003
    [9]YANG Kaixun, ZHANG Jizhen, TAN Ya, FANG Jian. Research progress of MXene/fibrous material composites[J]. Acta Materiae Compositae Sinica, 2022, 39(2): 460-466. DOI: 10.13801/j.cnki.fhclxb.20210805.005
    [10]LIU Junjie, YANG Wenjie, YANG Wei, LU Hongdian. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. DOI: 10.13801/j.cnki.fhclxb.20210408.001

Catalog

    Article Metrics

    Article views (1389) PDF downloads (93) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return