Citation: | FAN Kefan, LI Kun, YANG Zhijian, et al. Preparation of dual-network MXene hydrogels and their electromagnetic and UV shielding properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3939-3949. DOI: 10.13801/j.cnki.fhclxb.20220907.005 |
[1] |
胡魁, 王映月, 王昊昱, 等. 高强度耐低温纳米纤维素/聚乙烯醇导电复合水凝胶的制备及其在柔性传感中的应用[J]. 复合材料学报, 2022, 40(2):1060-1070. DOI: 10.13801/j.cnki.fhclxb.20220322.003
HU Kui, WANG Yingyue, WANG Haoyu, et al. Preparation of high-strength and low-temperature-resistant nanocellulose/polyvinyl alcohol conductive composite hydrogel and its application in flexible sensing[J]. Acta Materiae Compositae Sinica,2022,40(2):1060-1070(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20220322.003
|
[2] |
MA C, MA M G, SI C, et al. Flexible MXene-based composites for wearable devices[J]. Advanced Functional Materials,2021,31(22):2009524. DOI: 10.1002/adfm.202009524
|
[3] |
WANG S X, LIU Q R, FENG S J, et al. A water-retaining, self-healing hydrogel as ionic skin with a highly pressure sensitive properties[J]. Journal of the Taiwan Institute of Chemical Engineers,2019,104:318-329. DOI: 10.1016/j.jtice.2019.09.005
|
[4] |
李晓彬. 自修复的MXene复合水凝胶的制备与传感性能研究[D]. 北京: 北京化工大学, 2021.
LI Xiaobin. Preparation and sensing properties of self-healing MXene composite hydrogels[D]. Beijing: Beijing University of Chemical Technology, 2021(in Chinese).
|
[5] |
LIM H R, KIM H S, QAZI R, et al. Advanced soft materials, sensor integrations, and applications of wearable flexible hybrid electronics in healthcare, energy, and environment[J]. Advanced Materials,2020,32(15):1901924. DOI: 10.1002/adma.201901924
|
[6] |
IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883. DOI: 10.1002/adfm.202000883
|
[7] |
LI S, ZHOU X, DONG Y, et al. Flexible self-repairing materials for wearable sensing applications: Elastomers and hydrogels[J]. Macromolecular Rapid Communications,2020,41(23):2000444. DOI: 10.1002/marc.202000444
|
[8] |
MIAO M, LIU R, THAIBOONROD S, et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(9):3120-3126. DOI: 10.1039/C9TC06361G
|
[9] |
YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. DOI: 10.1002/adma.201906769
|
[10] |
XIA Y, GAO W, GAO C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials,2022,32(42):2204591. DOI: 10.1002/adfm.202204591
|
[11] |
ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. DOI: 10.1021/acs.chemmater.7b02847
|
[12] |
TONDERA C, AKBAR T F, THOMAS A K, et al. Highly conductive, stretchable, and cell-adhesive hydrogel by nanoclay doping[J]. Small,2019,15(27):e1901406. DOI: 10.1002/smll.201901406
|
[13] |
HIRSCH M, CHARLET A, AMSTAD E. 3D printing of strong and tough double network granular hydrogels[J]. Advanced Functional Materials,2020,31(5):2005929.
|
[14] |
张光照. 基于脲基嘧啶酮四重氢键超分子水凝胶的设计及其刺激响应性能研究[D]. 广州: 华南理工大学, 2019.
ZHANG Guangzhao. Design and stimuli-responsive properties of supramolecular hydrogels based on ureidopyrimidinone quadruple hydrogen bonds[D]. Guangzhou: South China University of Technology, 2019(in Chinese).
|
[15] |
JEON I, CUI J, ILLEPERUMA W R, et al. Extremely stretchable and fast self-healing hydrogels[J]. Advanced Materials,2016,28(23):4678-4683. DOI: 10.1002/adma.201600480
|
[16] |
鲁程程, 于振坤, 杨园园, 等. 聚丙烯酸-Al3+/壳聚糖复合双网络水凝胶的制备与性能[J]. 复合材料学报, 2021, 39(12):5901-5911. DOI: 10.13801/j.cnki.fhclxb.20211119.004
LU Chengcheng, YU Zhenkun, YANG Yuanyuan, et al. Preparation and properties of polyacrylic acid-Al3+/chitosan composite double network hydrogels[J]. Acta Materiae Compositae Sinica,2021,39(12):5901-5911(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20211119.004
|
[17] |
LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. DOI: 10.1002/aelm.201600255
|
[18] |
ZHAO H, HAO S, FU Q, et al. Ultrafast fabrication of lignin-encapsulated silica nanoparticles reinforced conductive hydrogels with high elasticity and self-adhesion for strain sensors[J]. Chemistry of Materials,2022,34(11):5258-5272. DOI: 10.1021/acs.chemmater.2c00934
|
[19] |
GE G, ZHANG Y Z, ZHANG W, et al. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: A molecular approach[J]. ACS Nano,2021,15(2):2698-2706. DOI: 10.1021/acsnano.0c07998
|
[20] |
DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2Tx MXene initiated by metal ions[J]. Advanced Materials,2019,31(43):1902432. DOI: 10.1002/adma.201902432
|
[21] |
CHEN W, BU Y, LI D, et al. Development of high-strength, tough, and self-healing carboxymethyl guar gum-based hydrogels for human motion detection[J]. Journal of Materials Chemistry C,2020,8(3):900-908. DOI: 10.1039/C9TC05797H
|
[22] |
WANG Y, HUANG F, CHEN X, et al. Stretchable, conductive, and self-healing hydrogel with super metal adhesion[J]. Chemistry of Materials,2018,30(13):4289-4297. DOI: 10.1021/acs.chemmater.8b01260
|
[23] |
QIAO H, QI P, ZHANG X, et al. Multiple weak H-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors[J]. ACS Applied Materials & Interfaces,2019,11(8):7755-7763. DOI: 10.1021/acsami.8b20380
|