Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
CHU Na, LUO Chunjia, CHAO Min, et al. Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4146-4159. doi: 10.13801/j.cnki.fhclxb.20231214.002
Citation: CHU Na, LUO Chunjia, CHAO Min, et al. Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4146-4159. doi: 10.13801/j.cnki.fhclxb.20231214.002

Preparation and properties of multifunctional MXene-CCNT/polyimide electromagnetic shielding films

doi: 10.13801/j.cnki.fhclxb.20231214.002
Funds:  National Natural Science Foundation of China (22005039); Shaanxi Key Research & Development Project (2022GY-403); Innovation Capability Support Program of Shaanxi (2023-CX-TD-43); Fundamental Research Funds for the Central Universities, CHD (300102312403; 300102313208)
  • Received Date: 2023-10-11
  • Accepted Date: 2023-12-07
  • Rev Recd Date: 2023-11-20
  • Available Online: 2023-12-14
  • Publish Date: 2024-08-01
  • Conductive polymer composites (CPCs) are widely used for the preparation of electromagnetic shielding materials due to their good comprehensive performance such as good corrosion resistance, high specific strength, low cost and easy processing. In this paper, MXene-carboxylated carbon nanotube/polyimide (MXene-CCNT/PI) composite films with good comprehensive performance were prepared by a simple scraping and thermal imidization method. The synergistic action of MXene and CCNT constructed a good conductive network, which gave the films high efficient electromagnetic shielding performance (EMI SE). When the contents of both MXene and CCNT were 12.5wt%, the film thickness was 80 μm, the conductivity was 5.88 S/cm, the EMI SE was 26.49 dB, and the ratio of electromagnetic shielding effectiveness to thickness (EMI SE/t) was 331.13 dB/mm. Moreover, the film showed long-lasting and stable EMI SE under extreme environments (acid-alkali treatment, high and low temperature treatment, and repetitive bending). At the same time, the MXene-CCNT/PI film still have a tensile strength of 53.17 MPa, excellent thermal stability (>500℃), and flame retardancy. Convenient and efficient preparation of polymer-based EMI shielding composites is realized, taking into account their excellent mechanical properties and heat resistance.

     

  • loading
  • [1]
    WANG Y, LUO C J, WU Y F, et al. High temperature stable, amorphous SiBCN microwave absorption ceramics with tunable carbon structures derived from divinylbenzene crosslinked hyperbranched polyborosilazane[J]. Carbon, 2023, 213: 118189. doi: 10.1016/j.carbon.2023.118189
    [2]
    曹雪鸿, 陈继伟. 纸基电磁屏蔽材料研究现状及发展趋势[J]. 造纸科学与技术, 2018, 37(5): 6-11.

    CAO Xuehong, CHEN Jiwei. Research status and development trend of paper-based electromagnetic shielding materials[J]. Paper Science and Technology, 2018, 37(5): 6-11(in Chinese).
    [3]
    温变英, 王雪娇, 方晓霞, 等. 碳系导电填料性质对PVB基功能薄膜结构及电磁屏蔽效能的影响[J]. 材料导报, 2018, 32(24): 4346-4350.

    WEN Bianying, WANG Xuejiao, FANG Xiaoxia, et al. Influence of carbon conductive filler properties on the structure and electromagnetic shielding effectiveness of PVB-based functional films[J]. Materials Reports, 2018, 32(24): 4346-4350(in Chinese).
    [4]
    LI Z W, LIN Z J, HAN M S, et al. Vertical graphene nanosheet/polyimide composite films for electromagnetic interference shielding[J]. ACS Applied Nano Materials, 2021, 4(7): 7461-7470. doi: 10.1021/acsanm.1c01471
    [5]
    YU Z, DAI T, YUAN S, et al. Electromagnetic interference shielding performance of anisotropic polyimide/graphene composite aerogels[J]. ACS Applied Materials and Interfaces, 2020, 12(27): 30990-31001. doi: 10.1021/acsami.0c07122
    [6]
    WANG G X, YU Q Z, HU Y M, et al. Influence of the filler dimensionality on the electrical, mechanical and electromagnetic shielding properties of isoprene rubber-based flexible conductive composites[J]. Composites Communications, 2020, 21: 100417. doi: 10.1016/j.coco.2020.100417
    [7]
    SUN K, WANG F, YANG W K, et al. Flexible conductive polyimide fiber/MXene composite film for electromagnetic interference shielding and joule heating with excellent harsh environment tolerance[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50368-50380.
    [8]
    张文展, 刘定荣, 全才兵, 等. 聚酰亚胺基电磁屏蔽材料研究进展[J]. 化工新型材料, 2020, 48(10): 10-14.

    ZHANG Wenzhan, LIU Dingrong, QUAN Caibing, et al. Research progress of polyimide-based electromagnetic shielding materials[J]. New Chemical Materials, 2020, 48(10): 10-14(in Chinese).
    [9]
    张如强, 龙柱, 张丹. 高性能聚酰亚胺电磁屏蔽材料的研究进展[J]. 精细化工, 2023, 40(1): 10-20, 43.

    ZHANG Ruqiang, LONG Zhu, ZHANG Dan. Research progress of high-performance polyimide electromagnetic shielding materials[J]. Fine Chemicals, 2023, 40(1): 10-20, 43(in Chinese).
    [10]
    张浩睿. 热塑性聚氨酯基电磁屏蔽薄膜的制备、性能调控及其应用[D]. 深圳: 中国科学院大学(中国科学院深圳先进技术研究院), 2022.

    ZHANG Haorui. Preparation, performance regulation and application of thermoplastic polyurethane based electromagnetic shielding film[D]. Shenzhen: Chinese Academy of Sciences University (Chinese Academy of Sciences Shenzhen Institute of Advanced Technology), 2022(in Chinese).
    [11]
    BIAN R J, HE G L, ZHI W Q, et al. Ultralight MXene-based aerogels with high electromagnetic interference shielding performance[J]. Journal of Materials Chemistry C, 2019, 7(3): 474-478. doi: 10.1039/C8TC04795B
    [12]
    秦文峰, 符佳伟, 李亚云, 等. 层状Ti3C2T x/水性聚氨酯复合双层薄膜的制备及电磁屏蔽性能[J]. 宇航材料工艺, 2021, 51(3): 49-53. doi: 10.12044/j.issn.1007-2330.2021.03.008

    QIN Wenfeng, FU Jiawei, LI Yayun, et al. Preparation and electromagnetic shielding properties of laminated Ti3C2T x/waterborne polyurethane composite bilayer films[J]. Aerospace Materials and Technology, 2021, 51(3): 49-53(in Chinese). doi: 10.12044/j.issn.1007-2330.2021.03.008
    [13]
    IQBAL A, SHAHZAD F, HANTANASIRISAKUL K, et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNT x (MXene)[J]. Science, 2020, 369(6502): 446-450. doi: 10.1126/science.aba7977
    [14]
    HAN M K, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2T x: MXenes for electromagnetic interference shielding[J]. ACS Nano, 2020, 14(4): 5008-5016. doi: 10.1021/acsnano.0c01312
    [15]
    XIONG R, HU K S, GRANT A M, et al. Ultrarobust transparent cellulose nanocrystal-graphene membranes with high electrical conductivity[J]. Advanced Materials, 2016, 28(7): 1501-1509. doi: 10.1002/adma.201504438
    [16]
    姜小丹, 卢少微, 刘兴民, 等. 超薄柔性MXene增强碳纳米管复合薄膜电磁屏蔽性能研究[J]. 炭素技术, 2023, 42(2) : 21-24, 36.

    JIANG Xiaodan, LU Shaowei, LIU Xingmin, et al. Research on the electromagnetic shielding performance of ultrathin flexible MXene reinforced carbon nanotube composite film [J]. Carbon Techniques, 2023, 42(2) : 21-24, 36(in Chinese).
    [17]
    JOSEPH J, MUNDA P R, JOHN D A, et al. Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness[J]. Materials Research Express, 2019, 6(8): 085617. doi: 10.1088/2053-1591/ab1e23
    [18]
    KINLOCH I A, SUHR J, LOU J, et al. Composites with carbon nanotubes and graphene: An outlook[J]. Science, 2018, 362(6414): 547-553. doi: 10.1126/science.aat7439
    [19]
    WANG Y Y, ZHOU Z H, ZHOU C G, et al. Lightweight and robust carbon canotube/polyimide foam for efficient and heat-resistant electromagnetic interference shielding and microwave absorption[J]. ACS Applied Materials & Interfaces, 2020, 12(7): 8704-8712.
    [20]
    李彦明. 多壁碳纳米管/聚酰亚胺复合薄膜的制备和性能研究[D]. 西安: 长安大学, 2021.

    LI Yanming. Nanotubes/polyimide composite film preparation and properties of multi-walled carbon[D]. Xi'an: Chang'an University, 2021(in Chinese).
    [21]
    FENG Y Y, LUO C J, CHEN X S, et al. Shell inspired heterogeneous membrane with smaller bandgap toward sunlight-activated sustainable water purification[J]. Chemical Engineering Journal, 2022, 440: 135910. doi: 10.1016/j.cej.2022.135910
    [22]
    中国国家标准化管理委员会. 塑料 拉伸性能的测定: GB/T 1040.3—2006[S]. 北京: 中国标准出版社, 2006.

    Standardization Administration of the People's Republic of China. Determination of tensile properties of plastics: GB/T 1040.3—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
    [23]
    ZHAO B, HAMIDINEJAD M, WANG S, et al. Advances in electromagnetic shielding properties of composite foams[J]. Journal of Materials Chemistry A, 2021, 9(14): 8896-8949. doi: 10.1039/D1TA00417D
    [24]
    LIU R T, MIAO M, LI Y H, et al. Ultrathin biomimetic polymeric Ti3C2T x MXene composite films for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(51): 44787-44795.
    [25]
    JIN X X, WANG J F, DAI L Z, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J]. Chemical Engineering Journal, 2020, 380: 122475. doi: 10.1016/j.cej.2019.122475
    [26]
    中国国家标准化管理委员会. 塑料用氧指数测定燃烧行为 第1部分: GB/T 2406.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Plastics—Determination of combustion behaviour by oxygen index—Part 1: GB/T 2406.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [27]
    WANG L, QIU H, SONG P, et al. 3D Ti3C2T x MXene/C hybrid foam/epoxy nanocomposites with superior electromagnetic interference shielding performances and robust mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2019, 123: 293-300. doi: 10.1016/j.compositesa.2019.05.030
    [28]
    丁孟贤. 聚酰亚胺: 化学、结构与性能的关系及材料[M]. 北京: 科学出版社, 2006: 55-56.

    DING Mengxian. Polyimides: Chemistry, structure-property relationships and materials [M]. Beijing: Science Press, 2006: 55-56(in Chinese).
    [29]
    ZHU Y, ZHAO X B, PENG Q Y, et al. Flame-retardant MXene/polyimide film with outstanding thermal and mechanical properties based on the secondary orientation strategy[J]. Nanoscale Advances, 2021, 3(19): 5683-5693. doi: 10.1039/D1NA00415H
    [30]
    崔晓萍, 朱光明, 刘文元. 纳米Al2O3/聚酰亚胺复合薄膜的介电与力学性能[J]. 复合材料学报, 2016, 33(11): 2419-2425.

    CUI Xiaoping, ZHU Guangming, LIU Wenyuan. Dielectric and mechanical properties of nano Al2O3/polyimide composite films[J]. Acta Materiae Compositae Sinica, 2016, 33(11): 2419-2425(in Chinese).
    [31]
    KIM E Y, ZHANG H M, LEE J H, et al. MXene/polyurethane auxetic composite foam for electromagnetic interference shielding and impact attenuation[J]. Composites Part A: Applied Science and Manufacturing, 2021, 147: 106430. doi: 10.1016/j.compositesa.2021.106430
    [32]
    LI Y L, ZHOU B, SHEN Y, et al. Scalable manufacturing of flexible, durable Ti3C2T x MXene/polyvinylidene fluoride film for multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications[J]. Composites Part B: Engineering, 2021, 217: 108902. doi: 10.1016/j.compositesb.2021.108902
    [33]
    KIM J Y, KIM G H, KIM S, et al. Fabrication of highly flexible electromagnetic interference shielding polyimide carbon black composite using hot-pressing method[J]. Composites Part B: Engineering, 2021, 221: 109010. doi: 10.1016/j.compositesb.2021.109010
    [34]
    CHU N, LUO C, CHEN X, et al. Ti3C2T x MXene/polyimide composites film with excellent mechanical properties and electromagnetic interference shielding properties[J]. Journal of Alloys and Compounds, 2023, 955: 170241. doi: 10.1016/j.jallcom.2023.170241
    [35]
    GUO H T, LI Y, JI Y, et al. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding[J]. Composites Communications, 2021, 27: 100879. doi: 10.1016/j.coco.2021.100879
    [36]
    LU J Y, ZHANG Y, TAO Y J, et al. Self-healable castor oil-based waterborne polyurethane/MXene film with outstanding electromagnetic interference shielding effectiveness and excellent shape memory performance[J]. Journal of Colloid and Interface Science, 2021, 588: 164-174. doi: 10.1016/j.jcis.2020.12.076
    [37]
    LU Z Q, JIA F F, ZHOU L H, et al. Micro-porous MXene/aramid nanofibers hybrid aerogel with reversible compression and efficient EMI shielding performance[J]. Composites Part B: Engineering, 2021, 217: 108853. doi: 10.1016/j.compositesb.2021.108853
    [38]
    BARANI Z, KARGAR F, MOHAMMADAZADEH A, et al. Multifunctional graphene composites for electromagnetic shielding and thermal management at elevated temperatures[J]. Advanced Electronic Materials, 2020, 6(11): 2000520. doi: 10.1002/aelm.202000520
    [39]
    ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science, 2020, 7(15): 2000979. doi: 10.1002/advs.202000979
    [40]
    TANG X H, LI J, WANG Y, et al. Controlling distribution of multi-walled carbon nanotube on surface area of poly(ε-caprolactone) to form sandwiched structure for high-efficiency electromagnetic interference shielding[J]. Composites Part B: Engineering, 2020, 196: 108121. doi: 10.1016/j.compositesb.2020.108121
    [41]
    邢一龙, 赵欣, 李梦. GNP/CNT/EP复合薄膜的电磁屏蔽性能研究[J]. 复合材料科学与工程, 2021(1): 52-57, 77. doi: 10.3969/j.issn.1003-0999.2021.01.008

    XING Yilong, ZHAO Xin, LI Meng. Research on electromagnetic shielding performance of GNP/CNT/EP composite films[J]. Composites Science and Engineering, 2021(1): 52-57, 77(in Chinese). doi: 10.3969/j.issn.1003-0999.2021.01.008
    [42]
    ZERAATI S A, SUNDARARAJ U. Carbon nanotube/ZnO nanowire/polyvinylidene fluoride hybrid nanocomposites for enhanced electromagnetic interference shielding[J]. The Canadian Journal of Chemical Engineering, 2020, 98(5): 1036-1046. doi: 10.1002/cjce.23717
    [43]
    YIN X M, LI H J, HAN L Y, et al. Lightweight and flexible 3D graphene microtubes membrane for high-efficiency electromagnetic-interference shielding[J]. Chemical Engineering Journal, 2020, 387: 124025. doi: 10.1016/j.cej.2020.124025
    [44]
    BHATTACHARJEE Y, CHATTERJEE D, BOSE S. Core-multishell heterostructure with excellent heat dissipation for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2018, 10(36): 30762-30773.
    [45]
    SAMBYAL P, IQBAL A, HONG J, et al. Ultralight and mechanically robust Ti3C2T x hybrid aerogel reinforced by carbon nanotubes for electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces, 2019, 11(41): 38046-38054.
    [46]
    YANG S, YAN D X, LI Y, et al. Flexible poly(vinylidene fluoride)-MXene/silver nanowire electromagnetic shielding films with joule heating performance[J]. Industrial & Engineering Chemistry Research, 2021, 60(27): 9824-9832.
    [47]
    YANG R L, GUI X C, YAO L, et al. Ultrathin, lightweight, and flexible CNT buckypaper enhanced using MXenes for electromagnetic interference shielding[J]. Nano-Micro Letters, 2021, 13: 1-13. doi: 10.1007/s40820-020-00525-y
    [48]
    HAN M K, YIN X W, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces, 2016, 8(32): 21011-21019.
    [49]
    ZHOU B, ZHANG Z, LI Y L, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces, 2020, 12(4): 4895-4905.
    [50]
    CHEN X S, PENG F C, WANG C, et al. Improving the flame retardancy and mechanical properties of epoxy composites significantly with a low-loading CNT-based hierarchical hybrid decorated with reactive hyperbranched polyphosphoramide[J]. Applied Surface Science, 2022, 576: 151765. doi: 10.1016/j.apsusc.2021.151765
    [51]
    郭雨佳, 徐靖雯, 陈文礼, 等. 多层夹芯结构木塑复合材料阻燃与力学性能[J]. 复合材料学报, 2024, 41(7): 3738-3746.

    GUO Yujia, XU Jingwen, CHEN Wenli, et al. Flame retardant and mechanical properties of wood-plastic composites with multi-layer sandwich structures[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3738-3746(in Chinese).
    [52]
    ZHAO Y N, CHEN J Y, LAI X J, et al. Efficient flame-retardant and multifunctional polyimide/MXene composite aerogel for intelligent fire protection[J]. Composites Part A: Applied Science and Manufacturing, 2022, 163: 107210.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(5)

    Article Metrics

    Article views (359) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return