Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
SHI Ouling, TAN Yanyan, WU Xiao, et al. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004
Citation: SHI Ouling, TAN Yanyan, WU Xiao, et al. Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4200-4210. doi: 10.13801/j.cnki.fhclxb.20231205.004

Construction of high conductive PVDF/MWCNTs-AgNWs@MXene bilayer 3D networks electromagnetic shielding composite films

doi: 10.13801/j.cnki.fhclxb.20231205.004
Funds:  Qiankehe Service Enterprises [2023] 001; Qiankehe Zhongyindi[2023]035; Guanke Contract [2022] 02
  • Received Date: 2023-11-02
  • Accepted Date: 2023-11-23
  • Rev Recd Date: 2023-11-20
  • Available Online: 2023-12-06
  • Publish Date: 2024-08-01
  • With the development of communication networks, wireless devices and aerospace industries. Electromagnetic wave hazards become prevalent. Therefore, it is essential to develop composites with better electromagnetic shielding properties. In this paper, highly conductive three-dimensional (conductivity up to 1.4×104 S·m−1) networked electromagnetic shielding composite films (Ti3C2Tx MXene-based functional composite films) were constructed using MXene (Ti3C2Tx), silver nanowires (AgNWs) and multi-walled carbon nanotubes (MWCNTs) in a bilayer. In particular, the aqueous solutions of 10 mL AgNWs and 15 mL Ti3C2Tx MXene were adsorbed on top of poly(vinylidene fluoride) (PVDF)/MWCNTs composite films by vacuum-assisted filtration (VAF), and the total electromagnetic interference shielding effectiveness (EMI SET) of the Ti3C2Tx MXene-based functional composite film was as high as 69.0 dB, which was 245% higher than that of the commercial standard (20 dB), of which the absorption loss effectiveness (SEA) accounted for 85.1%. It is shown that the main electromagnetic loss mechanism of Ti3C2Tx MXene-based functional composite films is absorption loss, with a specific electromagnetic shielding effectiveness (SSE/t) of up to 2719.8 dB/(cm−2·g). This work provides structural design and research ideas for the application of novel MXene materials in electromagnetic shielding composites.

     

  • loading
  • [1]
    SHARMA R, CLOWER W, RADADIA A D, et al. Development of geopolymer composites for EMI shielding from steel industry waste[J]. Journal of Materials Science:Materials in Electronics, 2022, 33(8): 1-15.
    [2]
    BATOOL S, BIBI A, FREZZA F, et al. Benefits and hazards of electromagnetic waves, telecommunication, physical and biomedical: A review[J]. European Review for Medical and Pharmacological Sciences, 2019, 23(7): 3121-3128.
    [3]
    LI Y M, LI Y R, HU W J, et al. Designing of an rGO-based heterostructure for highly efficient microwave absorption performance and flame retardancy[J]. Ceramics International, 2023, 49(20): 32600-32610. doi: 10.1016/j.ceramint.2023.07.227
    [4]
    ZHANG W M, ZHAO B, NI N, et al. High entropy rare earth hexaborides/tetraborides (HE REB6/HE REB4) composite powders with enhanced electromagnetic wave absorption performance[J]. Journal of Materials Science & Technology, 2021, 87: 155-166.
    [5]
    TENG R, SUN J M, NIE Y X, et al. An ultra-thin and highly efficient electromagnetic interference shielding composite paper with hydrophobic and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023, 253(31): 127510.
    [6]
    LI J T, LI J Z, LI T, et al. Flexible and excellent electromagnetic interference shielding film with porous alternating PVA-derived carbon and graphene layers[J]. iScience, 2023, 26(10): 107975. doi: 10.1016/j.isci.2023.107975
    [7]
    DU C L, WAN G P, WU L H, et al. Iron-doped nickel-cobalt bimetallic phosphide nanowire hybrids for solid-state supercapacitors with excellent electromagnetic interference shielding[J]. Journal of Colloid and Interface Science, 2023, 654(Pt A): 486-494.
    [8]
    ZAHID M, ANUM R, SIDDIQUE S, et al. Polyaniline-based nanocomposites for electromagnetic interference shielding applications: A review[J]. Journal of Thermoplastic Composite Materials, 2023, 36(4): 1717-1761. doi: 10.1177/08927057211022408
    [9]
    WANG Z, FAN J, GUO X, et al. Enhanced permittivity of negative permittivity middle-layer sandwich polymer matrix composites through conductive filling with flake MAX phase ceramics[J]. RSC Advances, 2020, 10(45): 27025-27032. doi: 10.1039/D0RA03493B
    [10]
    FARD K H A, GHASEMI R, MOHAMMADI B. Study of EMI-based damage type identification in a cracked metallic specimen repaired by a composite patch[J]. Russian Journal of Nondestructive Testing, 2020, 56(6): 540-548. doi: 10.1134/S1061830920060054
    [11]
    XIA Y X, GAO W W, GAO C. A review on graphene-based electromagnetic functional materials: Electromagnetic wave shielding and absorption[J]. Advanced Functional Materials, 2022, 32(42): 1-36.
    [12]
    LUO W, JIANG X, LIU Y, et al. Entropy-driven morphology regulation of max phase solid solutions with enhanced microwave absorption and thermal insulation performance[J]. Small, 2023, 20(8): e2305453.
    [13]
    YAO Y Y, JIN S H, ZOU H M, et al. Polymer-based lightweight materials for electromagnetic interference shielding: A review[J]. Journal of Materials Science, 2021, 56(11): 1-32.
    [14]
    YANG L, CHEN Y H, WANG M, et al. Fused deposition modeling 3D printing of novel poly(vinyl alcohol)/graphene nanocomposite with enhanced mechanical and electromagnetic interference shielding properties[J]. Industrial & Engineering Chemistry Research, 2020, 59(16): 8066-8077.
    [15]
    JIANG D W, MURUGADOSS V, WANG Y, et al. Electromagnetic interference shielding polymers and nanocomposites—A review[J]. Polymer Reviews, 2019, 59(2): 280-337. doi: 10.1080/15583724.2018.1546737
    [16]
    HSIAO S, MA C M, LIAO W. Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance[J]. ACS Applied Materials & Interfaces, 2014, 6(13): 10667-10678.
    [17]
    HUANG X, TUERSUN Y, LUO P, et al. In-situ reduction of AgNPs on MXene surfaces for synthesis of efficient thermally conductive composites with powerful electromagnetic shielding capabilities[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 677(PB): 132444.
    [18]
    XIONG C Y, WANG T X, ZHOU L F, et al. Fabrication of dual-function conductive cellulose-based composites with layered conductive network structures for supercapacitors and electromagnetic shielding[J]. Chemical Engineering Journal, 2023, 472: 144958. doi: 10.1016/j.cej.2023.144958
    [19]
    GAO Q, YU Z, ZHANG S, et al. Hierarchical structured epoxy/reduced graphene oxide/Ni-chains microcellular composite foam for high-performance electromagnetic interference shielding[J]. Composites Part A: Applied Science and Manufacturing, 2023, 170: 107536. doi: 10.1016/j.compositesa.2023.107536
    [20]
    MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx Mxene/silver nanowire nanocomposite papers for high-performance[J]. Defense & Aerospace Week, 2020, 14(7): 8368-8382.
    [21]
    QU Y F, LI X, WANG X, et al. Multifunctional AgNWs@MXene/AgNFs electromagnetic shielding composites for flexible and highly integrated advanced electronics[J]. Composites Science and Technology, 2022, 230: 109753. doi: 10.1016/j.compscitech.2022.109753
    [22]
    CHU Q D, LIN H, MA M, et al. Cellulose nanofiber/graphene nanoplatelet/MXene nanocomposites for enhanced electromagnetic shielding and high in-plane thermal conductivity[J]. ACS Applied Nano Materials, 2022, 5(5): 7217-7227. doi: 10.1021/acsanm.2c01126
    [23]
    ZHU L L, MO R, YIN C G, et al. Synergistically constructed electromagnetic network of magnetic particle-decorated carbon nanotubes and MXene for efficient electromagnetic shielding[J]. ACS Applied Materials & Interfaces, 2022, 14(50): 56120-56131. doi: 10.1021/acsami.2c17696
    [24]
    IQBAL A, HASSAN T, GAO Z G, et al. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review[J]. Carbon, 2023, 203(25): 542-560.
    [25]
    SHAHZAD F, ALHABEB M, HATTER B C, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science, 2016, 353(6304): 1137-1140. doi: 10.1126/science.aag2421
    [26]
    XIN W, XI G, CAO W, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances, 2019, 9(51): 2046-2069.
    [27]
    CHARD K, ZHANG X, CHEN Y J. Recent progress in MXene and graphene based nanocomposites for microwave absorption and electromagnetic interference shielding[J]. Arabian Journal of Chemistry, 2022, 15(10): 104143. doi: 10.1016/j.arabjc.2022.104143
    [28]
    HAN Y X, RUAN K P, GU J W, et al. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances[J]. Nano Research, 2022, 15(5): 1-9.
    [29]
    TAN Y Y, XUE Y, LI K T, et al. PVDF/MWCNTs/RGO@Fe3O4/AgNWs composite film with a bilayer structure for high EMI shielding and electrical conductivity[J]. Polymer Composites, 2023: 1-16.
    [30]
    中国国家标准化管理委员会. 平面型电磁屏蔽材料屏蔽效能测量方法: GB/T 30142—2013[S]. 北京: 中国标准出版社, 2013.

    Standardization Administration of the People's Republic of China. Measurement of shielding efficiency of planar electromagnetic shielding materials quantitative method: GB/T 30142—2013[S]. Beijing: China Standard Press, 2013(in Chinese).
    [31]
    JIANG Z Y, ZHAO S Q, CHEN L S, et al. Freestanding "core-shell" AgNWs/metallic hybrid mesh electrodes for a highly efficient transparent electromagnetic interference shielding film[J]. Optics Express, 2021, 29(12): 18760-18768. doi: 10.1364/OE.423369
    [32]
    KHOT A C, DONGALE T D, PARK J H, et al. Ti3C2-based MXene oxide nanosheets for resistive memory and synaptic learning applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4): 5216-5227.
    [33]
    李亚萍. 缝型及缝迹对电磁屏蔽服装屏蔽效能的影响 [D]. 郑州: 中原工学院, 2018.

    LI Yaping. Effect of sewing type and stitching on shielding effectiveness of electromagnetic shielding garments [D]. Zhengzhou: Zhongyuan Institute of Technology, 2018(in Chinese).
    [34]
    CHENG C B, JIANG Y L, SUN X, et al. Tunable negative permittivity behavior and electromagnetic shielding performance of silver/silicon nitride metacomposites[J]. Composites Part A: Applied Science and Manufacturing, 2020, 130: 105753. doi: 10.1016/j.compositesa.2019.105753
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views (412) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return