Volume 38 Issue 8
Aug.  2021
Turn off MathJax
Article Contents
LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001
Citation: LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2404-2417. doi: 10.13801/j.cnki.fhclxb.20210408.001

Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding

doi: 10.13801/j.cnki.fhclxb.20210408.001
  • Received Date: 2021-01-19
  • Accepted Date: 2021-04-01
  • Available Online: 2021-04-08
  • Publish Date: 2021-08-15
  • The increasing popularity of 5G electronic consumer products has brought convenience to people’s life, while there are some problems, such as high risk of electromagnetic interference (EMI) and high power consuming of 5G networks. To solve these problems, it is necessary to develop novel materials with high EMI shielding performance and high-capacity electrode materials. As a new two-dimensional (2D) material, transition metal carbides/nitrides (MXene) have excellent conductivity, low density, hydrophilic surface, 2D layer morphology and tunable surface chemistry, etc. MXene shows promising application prospects in EMI shielding and energy storage due to the facile operation for fabricating films. A lot of MXene-based composite films have been reported recently. Thus in this article, we introduced the preparation methods of MXene nanosheets and MXene-based composite films including their advantages and disadvantages. Secondly, we summarized the research progress of MXene in lithium battery, supercapacitor and EMI shielding fields, and concluded the current mainstream composite materials and the characteristics of MXene composite film in structure and performance. Finally, we proposed critical insights on these scientific challenges and potential solutions. Besides, a future perspective on this technology including other challenges was also described.

     

  • loading
  • [1]
    SHEN B, ZHAI W, ZHENG W. Ultrathin flexible graphene film: an excellent thermal conducting material with efficient EMI shielding[J]. Advanced Functional Materials,2014,24(28):4542-4548. doi: 10.1002/adfm.201400079
    [2]
    YAN D-X, PANG H, LI B, et al. Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding[J]. Advanced Functional Materials,2015,25(4):559-566. doi: 10.1002/adfm.201403809
    [3]
    HAN M, SHUCK C E, RAKHMANOV R, et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding[J]. ACS Nano,2020,14(4):5008-5016. doi: 10.1021/acsnano.0c01312
    [4]
    LU L, WEI X, ZHANG Y, et al. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties[J]. Journal of Materials Chemistry C,2017,5(28):7035-7042. doi: 10.1039/C7TC02429K
    [5]
    DALAL J, LATHER S, GUPTA A, et al. EMI shielding properties of laminated graphene and PbTiO3 reinforced poly(3,4-ethylenedioxythiophene) nanocomposites[J]. Composites Science and Technology,2018,165(8):222-230.
    [6]
    SINGH K, OHLAN A, PHAM V H, et al. Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution[J]. Nanoscale,2013,5(6):2411-2420. doi: 10.1039/c3nr33962a
    [7]
    SUN Y, CHEN D, LIANG Z. Two-dimensional MXenes for energy storage and conversion applications[J]. Materials Today Energy,2017,5:22-36. doi: 10.1016/j.mtener.2017.04.008
    [8]
    DENG R, CHEN B, LI H, et al. MXene/Co3O4 composite material: Stable synthesis and its enhanced broadband microwave absorption[J]. Applied Surface Science,2019,488:921-930. doi: 10.1016/j.apsusc.2019.05.058
    [9]
    HE P, WANG X X, CAI Y Z, et al. Tailoring Ti3C2Tx nanosheets to tune local conductive network as an environmentally friendly material for highly efficient electromagnetic interference shielding[J]. Nanoscale,2019,11(13):6080-6088. doi: 10.1039/C8NR10489A
    [10]
    WANG Y, GAO X, ZHANG L, et al. Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber[J]. Applied Surface Science,2019,480:830-838. doi: 10.1016/j.apsusc.2019.03.049
    [11]
    ZHANG X, WANG H, HU R, et al. Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles[J]. Applied Surface Science,2019,484:383-391. doi: 10.1016/j.apsusc.2019.03.264
    [12]
    AI J, LEI Y, YANG S, et al. SnS nanoparticles anchored on Ti3C2 nanosheets matrix via electrostatic attraction method as novel anode for lithium ion batteries[J]. Chemical Engineering Journal,2019,357:150-158. doi: 10.1016/j.cej.2018.09.109
    [13]
    SHI C, BEIDAGHI M, NAGUIB M, et al. Structure of nanocrystalline Ti3C2 MXene using atomic pair distribution function[J]. Physical Review Letters,2014,112(12):125501. doi: 10.1103/PhysRevLett.112.125501
    [14]
    SUN S J, LIAO C, HAFEZ A M, et al. Two-dimensional MXenes for energy storage[J]. Chemical Engineering Journal,2018,338:27-45. doi: 10.1016/j.cej.2017.12.155
    [15]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [16]
    LIPATOV A, ALHABEB M, LUKATSKAYA M R, et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes[J]. Advanced Electronic Materials,2016,2(12):1600255. doi: 10.1002/aelm.201600255
    [17]
    MALESKI K, MOCHALIN V N, GOGOTSI Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents[J]. Chemistry of Materials,2017,29(4):1632-1640. doi: 10.1021/acs.chemmater.6b04830
    [18]
    YANG W, LIU J J, WANG L L, et al. Multifunctional MXene/natural rubber composite films with exceptional flexibility and durability[J]. Composites Part B: Engineering,2020,188:107875. doi: 10.1016/j.compositesb.2020.107875
    [19]
    ALHABEB M, MALESKI K, ANASORI B, et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene)[J]. Chemistry of Materials,2017,29(18):7633-7644. doi: 10.1021/acs.chemmater.7b02847
    [20]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3 AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [21]
    MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4:1716. doi: 10.1038/ncomms2664
    [22]
    NAGUIB M, UNOCIC R R, ARMSTRONG B L, et al. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”[J]. Dalton Transactions,2015,44(20):9353-9358. doi: 10.1039/C5DT01247C
    [23]
    LAKHE P, PREHN E M, HABIB T, et al. Process safety analysis for Ti3C2Tx MXene synthesis and processing[J]. Industrial & Engineering Chemistry Research,2019,58(4):1570-1579.
    [24]
    LIN B, YUEN A C Y, LI A, et al. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions[J]. Journal of hazardous materials,2020,381:120952. doi: 10.1016/j.jhazmat.2019.120952
    [25]
    SI J Y, TAWIAH B, SUN W L, et al. Functionalization of MXene nanosheets for polystyrene towards high thermal stability and flame retardant properties[J]. Polymers,2019,11(6):976. doi: 10.3390/polym11060976
    [26]
    DING L, WEI Y, WANG Y, et al. A two-dimensional lamellar membrane: MXene nanosheet stacks[J]. Angewandte Chemie,2017,56(7):1825-1829. doi: 10.1002/anie.201609306
    [27]
    刘张硕, 刘骥, 戴洋,等. 仿生构筑超薄MXene/CNC电磁屏蔽复合薄膜[J]. 无机材料学报, 2020, 35(1):99-104.

    LIU Z S, LIU J, DAI Y, et al. Bioinspired ultrathin MXene/CNC composite film for electromagnetic interference shielding[J]. Journal of Inorganic Materials,2020,35(1):99-104(in Chinese).
    [28]
    XIN W, XI G Q, CAO W T, et al. Lightweight and flexible MXene/CNF/silver composite membranes with a brick-like structure and high-performance electromagnetic-interference shielding[J]. RSC Advances,2019,9(51):29636-29644. doi: 10.1039/C9RA06399D
    [29]
    ZHANG Y, CHENG W, TIAN W, et al. Nacre-inspired tunable electromagnetic interference shielding sandwich films with superior mechanical and fire-resistant protective performance[J]. ACS Applied Materials Interfaces,2020,12(5):6371-6382. doi: 10.1021/acsami.9b18750
    [30]
    WANG S J, LI D S, JIANG L. Synergistic effects between MXenes and Ni chains in flexible and ultrathin electromagnetic interference shielding films[J]. Advanced Materials Interfaces,2019,6(19):1900961. doi: 10.1002/admi.201900961
    [31]
    AHN S, HAN T H, MALESKI K, et al. A 2D titanium carbide mxene flexible electrode for high-efficiency light-emitting diodes[J]. Advanced Materials,2020,32(23):2000919. doi: 10.1002/adma.202000919
    [32]
    JIN X, WANG J, DAI L, et al. Flame-retardant poly(vinyl alcohol)/MXene multilayered films with outstanding electromagnetic interference shielding and thermal conductive performances[J]. Chemical Engineering Journal,2020,380:122475. doi: 10.1016/j.cej.2019.122475
    [33]
    FENG Y, WU Q, DENG Q, et al. High dielectric and breakdown properties obtained in a PVDF based nanocomposite with sandwich structure at high temperature via all-2D design[J]. Journal of Materials Chemistry C,2019,7(22):6744-6751. doi: 10.1039/C9TC01378D
    [34]
    BORGES J, MANO J F. Molecular interactions driving the layer-by-layer assembly of multilayers[J]. Chemical Reviews,2014,114(18):8883-8942. doi: 10.1021/cr400531v
    [35]
    YUN J, ECHOLS I, FLOUDA P, et al. Layer-by-layer assembly of polyaniline nanofibers and MXene thin-film electrodes for electrochemical energy storage[J]. ACS Applied Materials & Interfaces,2019,11(51):47929-47938. doi: 10.1021/acsami.9b16692
    [36]
    QIN L, TAO Q, LIU X, et al. Polymer-MXene composite films formed by MXene-facilitated electrochemical polymerization for flexible solid-state microsupercapacitors[J]. Nano Energy,2019,60:734-742. doi: 10.1016/j.nanoen.2019.04.002
    [37]
    LI J, LEVITT A, KURRA N, et al. MXene-conducting polymer electrochromic microsupercapacitors[J]. Energy Storage Materials,2019,20:455-461. doi: 10.1016/j.ensm.2019.04.028
    [38]
    YANG L, ZHENG W, ZHANG P, et al. MXene/CNTs films prepared by electrophoretic deposition for supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,830-831:1-6. doi: 10.1016/j.jelechem.2018.10.024
    [39]
    RAJAVEL K, LUO S, WAN Y, et al. 2D Ti3C2Tx MXene/polyvinylidene fluoride (PVDF) nanocomposites for attenuation of electromagnetic radiation with excellent heat dissipation[J]. Composites Part A: Applied Science and Manufacturing,2020,129:105693. doi: 10.1016/j.compositesa.2019.105693
    [40]
    HUANG Y, WU D, WANG J, et al. Amphiphilic polymer promoted assembly of macroporous graphene/SnO2 frameworks with tunable porosity for high-performance lithium storage[J]. Small,2014,10(11):2226-2232. doi: 10.1002/smll.201303423
    [41]
    MO R, LEI Z, SUN K, et al. Facile synthesis of anatase TiO2 quantum-dot/graphene-nanosheet composites with enhanced electrochemical performance for lithium-ion batteries[J]. Advance Materials,2014,26(13):2084-2088. doi: 10.1002/adma.201304338
    [42]
    PAN H, HU Y S, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy & Environmental Science,2013,6(8):2338.
    [43]
    ZHANG X, HOU L, CIESIELSKI A, et al. 2D materials beyond graphene for high-performance energy storage applications[J]. Advanced Energy Materials,2016,6(23):1600671. doi: 10.1002/aenm.201600671
    [44]
    ZHANG Y, MU Z, YANG C, et al. Rational design of MXene/1T-2H MoS2-C nanohybrids for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials,2018,28(38):1707578. doi: 10.1002/adfm.201707578
    [45]
    HUANG J, MENG R, ZU L, et al. Sandwich-like Na0.23TiO2 nanobelt/Ti3C2 MXene composites from a scalable in situ transformation reaction for long-life high-rate lithium/sodium-ion batteries[J]. Nano Energy,2018,46:20-28. doi: 10.1016/j.nanoen.2018.01.030
    [46]
    SUN D, WANG M, LI Z, et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries[J]. Electrochemistry Communications,2014,47:80-83. doi: 10.1016/j.elecom.2014.07.026
    [47]
    刘浩, 姚卫棠. Ti基MXene及其复合材料在金属离子电池中的进展[J]. 复合材料学报, 2020, 37(12):2984-3003.

    LIU H, YAO W T. Research progress of Ti-based MXene and its composites in metal-ion batteries[J]. Acta Materiae Compositae Sinica,2020,37(12):2984-3003(in Chinese).
    [48]
    TANG Q, ZHOU Z, SHEN P. Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X=F, OH) monolayer[J]. Journal of the American Chemical Society,2012,134(40):16909-16916. doi: 10.1021/ja308463r
    [49]
    LU M, LI H, HAN W, et al. 2D titanium carbide (MXene) electrodes with lower-F surface for high performance lithium-ion batteries[J]. Journal of Energy Chemistry,2019,31:148-153. doi: 10.1016/j.jechem.2018.05.017
    [50]
    WU J, WANG Y, ZHANG Y, et al. Highly safe and ionothermal synthesis of Ti3C2 MXene with expanded interlayer spacing for enhanced lithium storage[J]. Journal of Energy Chemistry,2020,47:203-209. doi: 10.1016/j.jechem.2019.11.029
    [51]
    LU M, ZHANG Y, CHEN J, et al. K+ alkalization promoted Ca2+ intercalation in V2CT MXene for enhanced Li storage[J]. Journal of Energy Chemistry,2020,49:358-364. doi: 10.1016/j.jechem.2020.03.002
    [52]
    MENG J, ZHANG F, ZHANG L, et al. Rolling up MXene sheets into scrolls to promote their anode performance in lithium-ion batteries[J]. Journal of Energy Chemistry,2020,46:256-263. doi: 10.1016/j.jechem.2019.10.008
    [53]
    REN C E, ZHAO M-Q, MAKARYAN T, et al. Porous two-dimensional transition metal carbide (MXene) flakes for high-performance Li-ion storage[J]. ChemElectroChem,2016,3(5):689-693. doi: 10.1002/celc.201600059
    [54]
    ZHANG P, SOOMRO R A, GUAN Z, et al. 3D carbon-coated MXene architectures with high and ultrafast lithium/sodium-ion storage[J]. Energy Storage Materials,2020,29:163-171. doi: 10.1016/j.ensm.2020.04.016
    [55]
    ZHANG R, XUE Z, QIN J, et al. NiCo-LDH/Ti3C2 MXene hybrid materials for lithium ion battery with high-rate capability and long cycle life[J]. Journal of Energy Chemistry,2020,50:143-153. doi: 10.1016/j.jechem.2020.03.018
    [56]
    LIU Y, YU J, GUO D, et al. Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage[J]. Journal of Alloys and Compounds,2020,815:152403. doi: 10.1016/j.jallcom.2019.152403
    [57]
    XU S, WEI G, LI J, et al. Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices[J]. Journal of Materials Chemistry A,2017,5(33):17442-17451. doi: 10.1039/C7TA05721K
    [58]
    MA Z, ZHOU X, DENG W, et al. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage[J]. ACS Applied Materials & Interfaces,2018,10(4):3634-3643. doi: 10.1021/acsami.7b17386
    [59]
    LIU Y, HE Y, VARGUN E, et al. 3D porous Ti3C2 MXene/NiCo-MOF composites for enhanced lithium storage[J]. Nanomaterials,2020,10(4):695. doi: 10.3390/nano10040695
    [60]
    XIONG C, ZHU G Y, JIANG H R, et al. Achieving multiplexed functionality in a hierarchical MXene-based sulfur host for high-rate, high-loading lithium-sulfur batteries[J]. Energy Storage Materials,2020,33:147-157. doi: 10.1016/j.ensm.2020.08.006
    [61]
    LI X, WEN C, LI H, et al. In situ decoration of nanosized metal oxide on highly conductive MXene nanosheets as efficient catalyst for Li-O2 battery[J]. Journal of Energy Chemistry,2020,47:272-280. doi: 10.1016/j.jechem.2020.02.016
    [62]
    ZHANG C, CUI L, ABDOLHOSSEINZADEH S, et al. Two-dimensional MXenes for lithium-sulfur batteries[J]. InfoMat,2020,2(4):613-638. doi: 10.1002/inf2.12080
    [63]
    ZHANG X, LIU Y, DONG S, et al. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance[J]. Electrochimica Acta,2019,294:233-239. doi: 10.1016/j.electacta.2018.10.096
    [64]
    ZHANG Z, GUO M, TANG Y, et al. High areal capacitance of vanadium oxides intercalated Ti3C2 MXene for flexible supercapacitors with high mass loading[J]. Nanotechnology,2020,31(16):165403. doi: 10.1088/1361-6528/ab6689
    [65]
    RAN F, WANG T, CHEN S, et al. Constructing expanded ion transport channels in flexible MXene film for pseudocapacitive energy storage[J]. Applied Surface Science,2020,511:145627. doi: 10.1016/j.apsusc.2020.145627
    [66]
    CHEN H, YU L, LIN Z, et al. Carbon nanotubes enhance flexible MXene films for high-rate supercapacitors[J]. Journal of Materials Science,2019,55(3):1148-1156.
    [67]
    YANG L, ZHENG W, ZHANG P, et al. Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors[J]. Electrochimica Acta,2019,300:349-356. doi: 10.1016/j.electacta.2019.01.122
    [68]
    LIU W, WANG Z, SU Y, et al. Molecularly stacking manganese dioxide/titanium carbide sheets to produce highly flexible and conductive film electrodes with improved pseudocapacitive performances[J]. Advanced Energy Materials,2017,7(22):1602834. doi: 10.1002/aenm.201602834
    [69]
    FANG Y, YANG B, HE D, et al. Porous and free-standing Ti3C2T -RGO film with ultrahigh gravimetric capacitance for supercapacitors[J]. Chinese Chemical Letters,2020,31(4):1004-1008. doi: 10.1016/j.cclet.2019.08.043
    [70]
    FAN Z, WANG Y, XIE Z, et al. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage[J]. Advanced Science,2018,5(10):1800750. doi: 10.1002/advs.201800750
    [71]
    LI J, PENG W J, FU Z J, et al. Achieving high electrical conductivity and excellent electromagnetic interference shielding in poly(lactic acid)/silver nanocomposites by constructing large-area silver nanoplates in polymer matrix[J]. Composites Part B: Engineering,2019,171:204-213. doi: 10.1016/j.compositesb.2019.05.003
    [72]
    TAN Y-J, LI J, CAI J-H, et al. Comparative study on solid and hollow glass microspheres for enhanced electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites[J]. Composites Part B: Engineering,2019,177:107378. doi: 10.1016/j.compositesb.2019.107378
    [73]
    LI J, CHEN J L, TANG X H, et al. Constructing nanopores in poly(oxymethylene)/multi-wall carbon nanotube nanocomposites via poly(l-lactide) assisting for improving electromagnetic interference shielding[J]. Journal of Colloid and Interface Science,2020,565:536-545. doi: 10.1016/j.jcis.2020.01.057
    [74]
    TANG X-H, LI J, TAN Y-J, et al. Achieve high performance microwave shielding in poly(ε-caprolactone)/multi-wall carbon nanotube composites via balancing absorption in conductive domains and multiple scattering at interfaces[J]. Applied Surface Science,2020,508:145178. doi: 10.1016/j.apsusc.2019.145178
    [75]
    ZENG Z, CHEN M, JIN H, et al. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding[J]. Carbon,2016,96:768-777. doi: 10.1016/j.carbon.2015.10.004
    [76]
    DALAL J, GUPTA A, LATHER S, et al. Poly (3,4-ethylene dioxythiophene) laminated reduced graphene oxide composites for effective electromagnetic interference shielding[J]. Journal of Alloys and Compounds,2016,682:52-60. doi: 10.1016/j.jallcom.2016.04.276
    [77]
    IQBAL A, SAMBYAL P, KOO C M. 2D MXenes for electromagnetic shielding: A review[J]. Advanced Functional Materials,2020,30(47):2000883.
    [78]
    WENG G-M, LI J, ALHABEB M, et al. Layer-by-layer assembly of cross-functional semi-transparent MXene-carbon nanotubes composite films for next-generation electromagnetic interference shielding[J]. Advanced Functional Materials,2018,28(44):1803360. doi: 10.1002/adfm.201803360
    [79]
    LIU J, LIU Z, ZHANG H B, et al. Ultrastrong and highly conductive MXene-based films for high-performance electromagnetic interference shielding[J]. Advanced Electronic Materials,2019,6(1):1901094.
    [80]
    FAN X, LI M, LI X, et al. Electromagnetic interference shielding Ti3C2T-bonded carbon black films with enhanced absorption performance[J]. Chinese Chemical Letters,2020,31(4):1026-1029. doi: 10.1016/j.cclet.2020.01.030
    [81]
    MIAO M, LIU R, THAIBOONROD S, et al. Silver nanowires intercalating Ti3C2Tx MXene composite films with excellent flexibility for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(9):3120-3126. doi: 10.1039/C9TC06361G
    [82]
    LIU Q, ZHANG Y, LIU Y, et al. Ultrathin, biomimetic multifunctional leaf-like silver nanowires/Ti3C2Tx MXene/cellulose nanofibrils nanocomposite film for high-performance electromagnetic interference shielding and thermal management[J]. Journal of Alloys and Compounds,2020,860:158151.
    [83]
    ZHOU B, SU M, YANG D, et al. Flexible MXene/silver nanowire-based transparent conductive film with electromagnetic interference shielding and electro-photo-thermal performance[J]. ACS Applied Materials & Interfaces,2020,12(36):40859-40869. doi: 10.1021/acsami.0c09020
    [84]
    CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [85]
    LIU Z, ZHANG Y, ZHANG H B, et al. Electrically conductive aluminum ion-reinforced MXene films for efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(5):1673-1678. doi: 10.1039/C9TC06304H
    [86]
    LIU Z, WANG W, TAN J, et al. Bioinspired ultra-thin polyurethane/MXene nacre-like nanocomposite films with synergistic mechanical properties for electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2020,8(21):7170-7180. doi: 10.1039/D0TC01249A
    [87]
    SHARMA M, SINGH M P, SRIVASTAVA C, et al. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations[J]. ACS Applied Materials & Interfaces,2014,6(23):21151-21160. doi: 10.1021/am506042a
    [88]
    LU S, LI B, MA K, et al. Flexible MXene/EPDM rubber with excellent thermal conductivity and electromagnetic interference performance[J]. Applied Physics A,2020,126(7):513. doi: 10.1007/s00339-020-03675-3
    [89]
    WEI H, WANG M, ZHENG W, et al. 2D Ti3C2Tx MXene/aramid nanofibers composite films prepared via a simple filtration method with excellent mechanical and electromagnetic interference shielding properties[J]. Ceramics International,2020,46(5):6199-6204. doi: 10.1016/j.ceramint.2019.11.087
    [90]
    LEI C, ZHANG Y, LIU D, et al. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications[J]. ACS Applied Materials & Interfaces,2020,12(23):26485-26495. doi: 10.1021/acsami.0c07387
    [91]
    FLAUZINO N W P, MARIANO M, DA SILVA I S V, et al. Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls[J]. Carbohydr Polymers,2016,153:143-152. doi: 10.1016/j.carbpol.2016.07.073
    [92]
    KANG H, TANG Y, YAO L, et al. Fabrication of graphene/natural rubber nanocomposites with high dynamic properties through convenient mechanical mixing[J]. Composites Part B: Engineering,2017,112:1-7. doi: 10.1016/j.compositesb.2016.12.035
    [93]
    YANG J-S, XIE Y-J, HE W. Research progress on chemical modification of alginate: A review[J]. Carbohydrate Polymers,2011,84(1):33-39. doi: 10.1016/j.carbpol.2010.11.048
    [94]
    SHAHZ AD F , ALHABEB M , HATTER C B, et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes)[J]. Science,2016,353(6304):1137-1140.
    [95]
    ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(6):1802040. doi: 10.1002/admi.201802040
    [96]
    ZHANG L Q, YANG S G, LI L, et al. Ultralight cellulose porous composites with manipulated porous structure and carbon nanotube distribution for promising electromagnetic interference shielding[J]. ACS Applied Materials & Interfaces,2018,10(46):40156-40167.
    [97]
    HUANG H D, LIU C Y, ZHOU D, et al. Cellulose composite aerogel for highly efficient electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2015,3(9):4983-4991. doi: 10.1039/C4TA05998K
    [98]
    HU D, HUANG X, LI S, et al. Flexible and durable cellulose/MXene nanocomposite paper for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,188:107995. doi: 10.1016/j.compscitech.2020.107995
    [99]
    CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [100]
    HE P, CAO M S, SHU J C, et al. Atomic layer tailoring titanium carbide MXene to tune transport and polarization for utilization of electromagnetic energy beyond solar and chemical energy[J]. ACS Applied Materials & Interfaces,2019,11(13):12535-12543. doi: 10.1021/acsami.9b00593
    [101]
    HE P, CAO M S, CAI Y Z, et al. Self-assembling flexible 2D carbide MXene film with tunable integrated electron migration and group relaxation toward energy storage and green EMI shielding[J]. Carbon,2020,157:80-89. doi: 10.1016/j.carbon.2019.10.009
    [102]
    IWATAKE A, NOGI M, YANO H. Cellulose nanofiber-reinforced polylactic acid[J]. Composites Science and Technology,2008,68(9):2103-2106. doi: 10.1016/j.compscitech.2008.03.006
    [103]
    ISOGAI A, SAITO T, FUKUZUMI H. TEMPO-oxidized cellulose nanofibers[J]. Nanoscale,2011,3(1):71-85. doi: 10.1039/C0NR00583E
    [104]
    ZHOU B, ZHANG Z, LI Y, et al. Flexible, robust, and multifunctional electromagnetic interference shielding film with alternating cellulose nanofiber and MXene layers[J]. ACS Applied Materials & Interfaces,2020,12(4):4895-4905. doi: 10.1021/acsami.9b19768
    [105]
    ZHAN Z, SONG Q, ZHOU Z, et al. Ultrastrong and conductive MXene/cellulose nanofiber films enhanced by hierarchical nano-architecture and interfacial interaction for flexible electromagnetic interference shielding[J]. Journal of Materials Chemistry C,2019,7(32):9820-9829. doi: 10.1039/C9TC03309B
    [106]
    HAN M, YIN X, WU H, et al. Ti3C2 MXenes with modified surface for high-performance electromagnetic absorption and shielding in the X-band[J]. ACS Applied Materials & Interfaces,2016,8(32):21011-21019. doi: 10.1021/acsami.6b06455
    [107]
    QING Y, ZHOU W, LUO F, et al. Titanium carbide (MXene) nanosheets as promising microwave absorbers[J]. Ceramics International,2016,42(14):16412-16416. doi: 10.1016/j.ceramint.2016.07.150
    [108]
    LIU X, WU J, HE J, et al. Electromagnetic interference shielding effectiveness of titanium carbide sheets[J]. Materials Letters,2017,205:261-263. doi: 10.1016/j.matlet.2017.06.101
    [109]
    KUMAR S, ARTI, KUMAR P, et al. Steady microwave absorption behavior of two-dimensional metal carbide MXene and polyaniline composite in X-band[J]. Journal of Magnetism and Magnetic Materials,2019,488:165364. doi: 10.1016/j.jmmm.2019.165364
    [110]
    LIU F, LI Y, HAO S, et al. Well-aligned MXene/chitosan films with humidity response for high-performance electromagnetic interference shielding[J]. Carbohydr Polymers,2020,243:116467. doi: 10.1016/j.carbpol.2020.116467
    [111]
    LI M, LU J, LUO K, et al. Element replacement approach by reaction with lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes[J]. Journal of the American Chemical Society,2019,141(11):4730-4737. doi: 10.1021/jacs.9b00574
    [112]
    LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (2187) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return