Citation: | MA Yao, WANG Jianbao, SHI Lihua, et al. A wideband, transparent and flexible microwave metamaterial absorber[J]. Acta Materiae Compositae Sinica, 2022, 39(4): 1601-1609. doi: 10.13801/j.cnki.fhclxb.20210525.001 |
[1] |
CUI T J, SMITH D R, LIU R P. Metamaterials: Theory, design and application[M]. NY: Springer, 2010: 2.
|
[2] |
冯一军, 朱博, 徐培华, 等. 电磁超材料在微波吸波材料中的应用探索[J]. 中国材料进展, 2013, 32(8):473-479.
FENG Yijun, ZHU Bo, XU Peihua, et al. Exploration on metamaterial applications to microwave absorbers[J]. Mateials China,2013,32(8):473-479(in Chinese).
|
[3] |
赵晓鹏, 刘亚红. 微波超材料与超表面中波的行为[M]. 北京: 科学出版社, 2016: 26-40.
ZHAO Xiaopeng, LIU Yahong. Behaviors of microwave in metamaterials and metasurfaces[M]. Beijing: Science Press, 2016: 26-40(in Chinese).
|
[4] |
罗先刚. 亚波长电磁学(下册)[M]. 北京: 科学出版社, 2017: 118-144.
LUO Xian'gang. Sub-wavelength electromagnetics (Vol. 2)[M]. Beijing: Science Press, 2017: 118-144(in Chinese).
|
[5] |
吕通, 张辰威, 刘甲, 等. 吸波超材料研究进展[J]. 复合材料学报, 2021, 38(1):25-35.
LV Tong, ZHANG Chenwei, LIU Jia, et al. Research progress in metamaterial absorber[J]. Acta Materiae Compo-sitae Sinica,2021,38(1):25-35(in Chinese).
|
[6] |
CHEN H T, TAYLOR A J, YU N. A review of metasurfaces: Physics and applications[J]. Reports on Progress in Physics,2016,79:076401. doi: 10.1088/0034-4885/79/7/076401
|
[7] |
LI A B, SINGH S, SIEVENPIPER D. Metasurfaces and their applications[J]. Nanophotonics,2018,7(6):989-1011. doi: 10.1515/nanoph-2017-0120
|
[8] |
贺敬文, 董涛, 张岩. 太赫兹波前调制超表面器件研究进展[J]. 红外与激光工程, 2020, 49(9):20201033. doi: 10.3788/IRLA20201033
HE Jingwen, DONG Tao, ZHANG Yan. Development of metasurfaces for wavefront modulation in terahertz waveband[J]. Infrared and Laser Engineering,2020,49(9):20201033(in Chinese). doi: 10.3788/IRLA20201033
|
[9] |
唐小燕, 柯友煌, 井绪峰, 等. 基于透射型几何相位编码超表面的太赫兹波束自由操控[J]. 光子学报, 2021, 50(1):0116002.
TANG Xiaoyan, KE Youhuang, JING Xufeng, et al. Free manipulation of terahertz wave based on the transmission type geometric phase coding metasurface[J]. Acta Photonica Sinica,2021,50(1):0116002(in Chinese).
|
[10] |
AKRAM M R, DING G W, CHEN K, et al. Ultrathin single layer metasurfaces with ultra-wideband operation for both transmission and reflection[J]. Advanced Materials,2020,32(12):1907308. doi: 10.1002/adma.201907308
|
[11] |
LI Y, LIN J, GUO H J, et al. A tunable metasurface with switchable functionalities: From perfect transparency to perfect absorption[J]. Advanced Optical Materials,2020,8:1901548. doi: 10.1002/adom.201901548
|
[12] |
李海鹏, 吴潇, 丁海洋, 等. 基于复合超构表面的宽带圆极化双功能器件设计[J]. 物理学报, 2021, 70(2):027803.
LI Haipeng, WU Xiao, DING Haiyang, et al. Wideband circularly-polarized bifunction devices employing composite metasurfaces[J]. Acta Physica Sinica,2021,70(2):027803(in Chinese).
|
[13] |
商婷婷, 赵敏, 赵建平, 等. 基于极化转化超表面的雷达散射截面减缩[J]. 通信技术, 2021, 54(1):19-24. doi: 10.3969/j.issn.1002-0802.2021.01.003
SHANG Tingting, ZHAO Min, ZHAO Jianping, et al. Radar cross-section reduction based on polarization conversion metasurface[J]. Communications Technology,2021,54(1):19-24(in Chinese). doi: 10.3969/j.issn.1002-0802.2021.01.003
|
[14] |
RAN Y Z, SHI L H, WANG J B, et al. Ultra-wide band linear-to-circular polarization converter with ellipse-shaped metasurfaces[J]. Optical Communication,2019,451:124-128. doi: 10.1016/j.optcom.2019.06.049
|
[15] |
ZHENG G X, MUHLENBERND H, KENNEY M, et al. Meta-surface holograms reaching 80% efficiency[J]. Nature Nano-technology,2015,10(4):308-312. doi: 10.1038/nnano.2015.2
|
[16] |
LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters,2008,100:207402. doi: 10.1103/PhysRevLett.100.207402
|
[17] |
SHEN X P, CUI T J, ZHAO J M, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express,2011,19(10):9401. doi: 10.1364/OE.19.009401
|
[18] |
LI H, YUAN L H, ZHOU B, et al. Ultrathin multiband gigahertz metamaterial absorbers[J]. Journal of Applied Physics,2011,110:014909. doi: 10.1063/1.3608246
|
[19] |
DING F, CUI Y X, GE X C, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters,2012,100:103506. doi: 10.1063/1.3692178
|
[20] |
蒲明博. 亚波长结构材料的宽带频率响应特性研究[D]. 北京: 中国科学院大学, 2013.
PU Mingbo. Study on the broadband frequency response of subwavelength metamaterial[D]. Beijing: University of Chinese Academy of Science, 2013(in Chinese).
|
[21] |
JANG T, YOUN H, SHIN Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photonics,2014,1:279-284. doi: 10.1021/ph400172u
|
[22] |
张辉彬. 基于电磁谐振的宽频周期吸波结构设计[D]. 成都: 电子科技大学, 2010.
ZHANG Huibin. Design of broadband periodic absorbing structure based on electromagnetic resonances[D]. Chengdu: University of Electronic Science and Technology of China, 2010(in Chinese).
|
[23] |
NGUYEN T T, LIM S. Angle- and polarization-insensitive broadband metamaterial absorber using resistive fan-shaped resonators[J]. Applied Physics Letters,2018,112:021605. doi: 10.1063/1.5004211
|
[24] |
MIN P P, SONG Z C, YANG L, et al. Transparent ultrawideband absorber based on simple patterned resistive meta-surface with three resonant modes[J]. Optics Express,2020,28(13):19518-19530. doi: 10.1364/OE.396812
|
[25] |
DENG G S, LV K, SUN H X, et al. An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure[J]. Journal of Physics D: Applied Physics,2021,54(16):165301. doi: 10.1088/1361-6463/abdb6a
|
[26] |
DENG R X, ZHANG K, LI M L, et al. Targeted design, analysis and experimental characterization of flexible microwave absorber[J]. Materials and Design,2019,162:119-129. doi: 10.1016/j.matdes.2018.11.038
|
[27] |
江孝伟, 武华. 吸收波长和吸收效率可控的超材料吸收器[J]. 物理学报, 2021, 70(2):027804. doi: 10.7498/aps.70.20201173
JIANG Xiaowei, WU Hua. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica,2021,70(2):027804(in Chinese). doi: 10.7498/aps.70.20201173
|
[28] |
ZHAO J, CHENG Q, CHEN J, et al. A tunable metamaterial absorber using varactor diodes[J]. New Journal of Physics,2013,15(4):43049-43059. doi: 10.1088/1367-2630/15/4/043049
|
[29] |
LI A B, LUO Z J, WAKATSUCHI H, et al. Nonlinear, active, and tunable metasurfaces for advanced electromagnetics applications[J]. IEEE Access,2017,5(99):27439-27452.
|
[30] |
LI H Y, COSTA F, WANG Y, et al. A wideband multifunctional absorber/reflector with polarization-insensitive performance[J]. IEEE Transactions on Antennas and Propogation,2020,68(6):5033-5038. doi: 10.1109/TAP.2019.2957709
|
[31] |
ZHANG J, WEI X Z, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics,2020,7:265-271.
|
[32] |
院伟. 磁性吸波材料低频带宽拓展研究[D]. 武汉: 武汉理工大学, 2016.
YUAN Wei. Extending the low-frequency absorption bandwidth of magnetic-based composites[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
|
[33] |
卫家. 吸收频率可调范围宽的铁氧体基超材料及其带宽拓展[D]. 武汉: 武汉理工大学, 2016.
WEI Jia. Ferrite based metamaterial absorber with tunableabsorption in wide-range and its bandwidth extension[D]. Wuhan: Wuhan University of Technology, 2016(in Chinese).
|
[34] |
GAO H T, WANG J J, XU B C, et al. Broadband metamaterial absorber based on magnetic substrate and resistance rings[J]. Materials Research Express,2019,6:045803. doi: 10.1088/2053-1591/aaf988
|
[35] |
HE Z D, WU L W, LIU Y, et al. Ultrawide bandwidth and large-angle electromagnetic wave absorption based on triple-nested helix metamaterial absorbers[J]. Journal of Applied Physics,2020,127(17):174901. doi: 10.1063/5.0001885
|
[36] |
HE Z D, LU Y, WU L W, et al. Combination of EG/Fe/Fe3O4 composites and hollowed out chiral metamaterials toward ultrathin, ultralight, broadband, polarization-insensitive, and wide-angle absorbers[J]. Advanced Materials Interfaces,2020,7(13):2000219.
|
[37] |
LI W, WU T L, WANG W, et al. Broadband patterned magnetic microwave absorber[J]. Journal of Applied Physics,2014,116(4):044110. doi: 10.1063/1.4891475
|
[38] |
LONG C, YIN S, WANG W, et al. Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode[J]. Scientific Reports,2016,6:21431. doi: 10.1038/srep21431
|
[39] |
LI W, WU T L, WANG W, et al. Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers[J]. Applied Physics Letters,2014,104(2):022903. doi: 10.1063/1.4862262
|
[40] |
HU D W, CAO J, LI W, et al. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators[J]. Advanced Optical Materials,2017,5(13):1700109. doi: 10.1002/adom.201700109
|
[41] |
LI W, WEI J, WANG W, et al. Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range[J]. Materials and Design,2016,110:27-34. doi: 10.1016/j.matdes.2016.07.118
|