Citation: | XU Liqiang, SUN Quan, ZHAN Zheng, YANG Runhong, TANG Zhijie, LU Yebo. Fabrication and application of mesh flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 970-977. doi: 10.13801/j.cnki.fhclxb.20220804.002 |
[1] |
ZHAO S, LI J, CAO D, et al. Recent advancements in flexible and stretchable electrodes for electromechanical sensors: Strategies, materials, and features[J]. ACS Applied Materials & Interfaces,2017,9(14):12147-12164.
|
[2] |
WANG X, LIU Z, ZHANG T. Flexible sensing electronics for wearable/attachable health monitoring[J]. Small,2017,13(25):1602790. doi: 10.1002/smll.201602790
|
[3] |
TRICOLI A, NASIRI N, DE S. Wearable and miniaturized sensor technologies for personalized and preventive medicine[J]. Advanced Functional Materials,2017,27(15):1605271. doi: 10.1002/adfm.201605271
|
[4] |
JASON N N, HO M D, CHENG W. Resistive electronic skin[J]. Journal of Materials Chemistry C,2017,5(24):5845-5866. doi: 10.1039/C7TC01169E
|
[5] |
TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J]. Advanced Materials,2016,28(22):4338-4372. doi: 10.1002/adma.201504244
|
[6] |
AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review[J]. Advanced Functional Materials,2016,26(11):1678-1698. doi: 10.1002/adfm.201504755
|
[7] |
XU F, LI X, SHI Y, et al. Recent developments for flexible pressure sensors: A review[J]. Micromachines,2018,9(11):1-17.
|
[8] |
KHAN S, ALI S, BERMAK A. Recent developments in printing flexible and wearable sensing electronics for healthcare applications[J]. Sensors,2019,19(5):1-34. doi: 10.1109/JSEN.2018.2885905
|
[9] |
HEO J S, HOSSAIN M F, KIM I. Challenges in design and fabrication of flexible/stretchable carbon- and textile-based wearable sensors for health monitoring: A critical review[J]. Sensors,2020,20(14):1-29. doi: 10.1109/JSEN.2020.2999769
|
[10] |
XU H, ZHANG M K, LU Y F, et al. Dual-mode wearable strain sensor based on graphene/colloidal crystal films for simultaneously detection of subtle and large human motions[J]. Advanced Materials Technologies,2020,5(2):1901056. doi: 10.1002/admt.201901056
|
[11] |
YIN B, WEN Y, HONG T, et al. Highly stretchable, ultrasensitive, and wearable strain sensors based on facilely prepared reduced graphene oxide woven fabrics in an ethanol flame[J]. ACS Applied Materials & Interfaces,2017,9(37):32054-32064.
|
[12] |
AN B, MA Y, LI W, et al. Three-dimensional multi-recognition flexible wearable sensor via graphene aerogel printing[J]. Chemical Communications,2016,52(73):10948-10951. doi: 10.1039/C6CC05910D
|
[13] |
ZHOU K, ZHANG C, XIONG Z, et al. Template-directed growth of hierarchical MOF hybrid arrays for tactile sensor[J]. Advanced Functional Materials,2020,30(38):2070257. doi: 10.1002/adfm.202070257
|
[14] |
YANG T, WANG W, HUANG Y, et al. Accurate monitoring of small strain for timbre recognition via ductile fragmentation of functionalized graphene multilayers[J]. ACS Applied Materials & Interfaces,2020,12(51):57352-57361.
|
[15] |
SUN X, SUN J, LI T, et al. Flexible tactile electronic skin sensor with 3D force detection based on porous CNTs/PDMS nanocomposites[J]. Nano-Micro Letters,2019,11(1):57. doi: 10.1007/s40820-019-0288-7
|
[16] |
LEE H, KIM M J, KIM J H, et al. Highly flexible graphene nanoplatelet-polydimethylsiloxane strain sensors with proximity-sensing capability[J]. Materials Research Express,2020,7(4):054603.
|
[17] |
POPOV V I, KOTIN I A, NEBOGATIKOVA N A, et al. Graphene-PEDOT : PSS humidity sensors for high sensitive, low-cost, highly-reliable, flexible, and printed electronics[J]. Materials,2019,12(21):1-9.
|
[18] |
JEONG S, HEO S, KIM H J. Mechanical property variation of AgNW/PDMS nanocomposites for fully elastomeric electrodes[J]. Journal of Materials Science: Materials in Electronics,2021,32(4):4727-4736. doi: 10.1007/s10854-020-05210-9
|
[19] |
ALI S, MADDIPATLA D, NARAKATHU B B, et al. Flexible capacitive pressure sensor based on PDMS substrate and Ga-In liquid metal[J]. IEEE Sensors Journal,2019,19(1):97-104. doi: 10.1109/JSEN.2018.2877929
|
[20] |
ZHANG Y, REN E, TANG H, et al. Carbon nanotubes/acetylene black/Ecoflex with corrugated microcracks for enhanced sensitivity for stretchable strain sensors[J]. Journal of Materials Science: Materials in Electronics,2020,31(17):14145-14156. doi: 10.1007/s10854-020-03969-5
|
[21] |
SLOBODIAN P, DANOVA R, OLEJNIK R, et al. Multifunctional flexible and stretchable polyurethane/carbon nanotube strain sensor for human breath monitoring[J]. Polymers for Advanced Technologies,2019,30(7):1891-1898. doi: 10.1002/pat.4621
|
[22] |
金凡, 吕大伍, 张天成, 等. 基于微结构的柔性压力传感器设计、制备及性能[J]. 复合材料学报, 2021, 38(10):3133-3150. doi: 10.13801/j.cnki.fhclxb.20210520.004
JIN Fan, LV Dawu, ZHANG Tiancheng, et al. Design, fabrication and performance of flexible pressure sensors based on microstructures[J]. Acta Materiae Compositae Sinica,2021,38(10):3133-3150(in Chinese). doi: 10.13801/j.cnki.fhclxb.20210520.004
|
[23] |
ZHANG S, WEN L, WANG H, et al. Vertical CNT-Ecoflex nanofins for highly linear broad-range-detection wearable strain sensors[J]. Journal of Materials Chemistry C,2018,6(19):5132-5139. doi: 10.1039/C7TC05571D
|
[24] |
ZHOU W, LI Y, LI P, et al. Metal mesh as a transparent omnidirectional strain sensor[J]. Advanced Materials Technologies,2019,4(4):1800698. doi: 10.1002/admt.201800698
|
[25] |
XU A, WANG Y, GAO J, et al. Facile fabrication of a homogeneous cellulose/polylactic acid composite film with improved biocompatibility, biodegradability and mechanical properties[J]. Green Chemistry,2019,21(16):4449-4456. doi: 10.1039/C9GC01918A
|
[26] |
JIBRIL L, RAMIREZ J, ZARETSKI A V, et al. Single-nanowire strain sensors fabricated by nanoskiving[J]. Sensors and Actuators A: Physical,2017,263:702-706. doi: 10.1016/j.sna.2017.07.046
|
[27] |
MA J, WANG P, CHEN H, et al. Highly sensitive and large-range strain sensor with a self-compensated two-order structure for human motion detection[J]. ACS Applied Materials & Interfaces,2019,11(8):8527-8536.
|
[28] |
WANG Y, GONG S, WANG S J, et al. Volume-invariant ionic liquid microbands as highly durable wearable biomedical sensors[J]. Materials Horizons,2016,3(3):208-213. doi: 10.1039/C5MH00284B
|