CHENG Huanbo, HUANG Haihong, LIU Zhifeng, et al. Reaction kinetics of degradation of carbon fiber-reinforced plastic in supercritical n-butanol[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 1922-1930. DOI: 10.13801/j.cnki.fhclxb.20151112.003
Citation: CHENG Huanbo, HUANG Haihong, LIU Zhifeng, et al. Reaction kinetics of degradation of carbon fiber-reinforced plastic in supercritical n-butanol[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 1922-1930. DOI: 10.13801/j.cnki.fhclxb.20151112.003

Reaction kinetics of degradation of carbon fiber-reinforced plastic in supercritical n-butanol

More Information
  • Received Date: September 10, 2015
  • Revised Date: October 25, 2015
  • The high performance carbon fiber (CF) can be recycled from CF/epoxy resin (CF/EP) composites by supercritical n-butanol under the action of KOH. Influences of reaction temperature and reaction time on degradation rate of EP in CF/EP composites were analyzed, and mechanical properties of the recycled CF reinforced polypropylene (PP) composites were investigated. Catalytic degradation process of the EP curing system in supercritical n-butanol was investigated based on analysis for components of degradation liquid phase products, and the degradation kinetics model was established. The catalytic degradation kinetics equation was proposed based on the calculation of the kinetics parameters. The results indicate that reaction temperature and reaction time show obvious positive correlation to degradation rate of EP. In comparison with the original CF reinforced PP composites, the tensile strength of the recycled CF reinforced PP composites decreases by 9.2%, the bending strength decreases by 20.9%, the bending modulus decreases by 10.9%, and the impact strength decreases by 7.4%. Degradation reactions of CF/EP composites are mainly the scission of linear chains such as C—C, —O—, etc. and the scission of C—N at the cross-linked segment in the molecule segment of EP curing system, and catalytic degradation reaction order of CF/EP composites is 2, reaction activation energy is 165.2 kJ·mol-1, pre-exponential factor is 3.62×1013 min-1, and the established kinetics equation can solve the problem that the reaction temperature and reaction time can not be estimated.
  • Related Articles

    [1]BAI Long, WANG Panpan, WANG Baoli, WANG Ziru, LI Tianxiang, YE Dong. Research progress on flexible thermal conductive materials[J]. Acta Materiae Compositae Sinica, 2025, 42(3): 1178-1191. DOI: 10.13801/j.cnki.fhclxb.20240829.001
    [2]DONG Hao, FAN Yuxin, ZHANG Xu, WEI Huige, XU Yifei, ZENG Wei. Bio-based conductive hydrogels and their application to flexible electronic devices[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 104-118. DOI: 10.13801/j.cnki.fhclxb.20240604.005
    [3]SUN Yilan, ZANG Xiaofeng, LIU Yinghui, JIANG Shuangyu, ZHANG Huayu, KONG Xia. Research progress in material selection of flexible electrochemical sensors[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2249-2261. DOI: 10.13801/j.cnki.fhclxb.20231205.002
    [4]HAN Qiaoqiao, WANG haibo, CHENG Xu, DU Xiaosheng, WANG shuang, DU Zongliang. Preparation of flexible polyurethane composite film based on multidimensional Co@NCNTs/FCI and their microwave absorption properties[J]. Acta Materiae Compositae Sinica.
    [5]HUANG Xing, REN Jiafei, LI Qifang, ZHOU Zheng. Research progress of polymer-based flexible transparent electromagnetic shielding composite materials[J]. Acta Materiae Compositae Sinica, 2023, 40(6): 3153-3166. DOI: 10.13801/j.cnki.fhclxb.20230119.003
    [6]XU Liqiang, SUN Quan, ZHAN Zheng, YANG Runhong, TANG Zhijie, LU Yebo. Fabrication and application of mesh flexible strain sensor[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 970-977. DOI: 10.13801/j.cnki.fhclxb.20220804.002
    [7]MA Hongliang, HAN Wenjia, JING Xin, LI Xia, DING Qijun. Research progress of paper-based flexible conductive composite materials[J]. Acta Materiae Compositae Sinica, 2021, 38(8): 2446-2458. DOI: 10.13801/j.cnki.fhclxb.20210426.004
    [8]GAO Hui, HUANG Longnan, LIU Yanju, LENG Jinsong. Developments and challenges of shape memory polymers in flexible optoelectronics[J]. Acta Materiae Compositae Sinica, 2018, 35(12): 3235-3246. DOI: 10.13801/j.cnki.fhclxb.20180502.006
    [9]MING Siyi, CHEN Gang, YAN Junfang, HE Jiahao, FANG Zhiqiang, HU Wen. Preparation of nanofibrillated cellulose dispersed monolayer clay nanoplatelet dispersion with high stability and its application in transparent flexible films[J]. Acta Materiae Compositae Sinica, 2018, 35(9): 2573-2578. DOI: 10.13801/j.cnki.fhclxb.20171227.007
    [10]ZHU Deju, ZHANG Chaohui, LIU Peng. Study on the design of natural and biomimetic flexible biological structures[J]. Acta Materiae Compositae Sinica, 2018, 35(6): 1636-1645. DOI: 10.13801/j.cnki.fhclxb.20170920.001
  • Cited by

    Periodical cited type(7)

    1. 赵乃君,华汶乐,陈列,黄宫淇. 激光诱导硅橡胶超疏水表面及其耐磨性研究. 材料保护. 2024(09): 45-53 .
    2. 何强,王晓森,宁梦遥. 硅橡胶超疏水涂层的撒粉法制备. 中国表面工程. 2023(02): 146-154+179 .
    3. 赵亚梅,霍梦丹,曹婷婷,丁思奇,陈丽. 提升超疏水材料力学耐久性的研究进展. 复合材料学报. 2023(04): 2004-2014 . 本站查看
    4. 胡娟,肖楠,谭亦可,李文强,曾向宏,张爱霞,陈莉,陈敏剑,周远建. 2022年国内有机硅进展. 有机硅材料. 2023(03): 68-89 .
    5. 杨威,颜丙越,夏国巍,尹国华,段祺君,谢军. 纳米SiO_2改性玻璃纤维增强树脂的耐湿热老化性能. 绝缘材料. 2023(10): 50-58 .
    6. 费楚然,胡纯,文艳辉,李戎,宁洪胜,张文晶,温得浩,李建喜. 苯基硅橡胶高剂量辐射老化性能研究. 合成材料老化与应用. 2023(05): 7-10 .
    7. 郭乐扬,阮海妮,李文戈,高原,姜涛,刘彦伯,吴新锋,赵远涛. 船舶减阻表面工程技术研究进展. 表面技术. 2022(09): 53-64+73 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (895) PDF downloads (672) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return