Citation: | CHU Zhen hua, CHEN Jingkun, LI Siyong, et al. Effect of High-Entropy Dodecaboride Reinforcements on the Properties of Magnesium Alloys[J]. Acta Materiae Compositae Sinica. |
With the rapid development of marine equipment technology, there is an increasing demand for lightweight marine equipment. Magnesium alloys possess advantages such as light specific gravity, high specific strength, and good castability. They are widely used in transportation, aerospace, and other fields and are considered one of the most promising materials. However, magnesium alloys have low hardness and poor corrosion resistance, which severely limits their application in marine environments. In this paper, high-entropy twelve boride is used as the reinforcing phase to improve the performance of magnesium alloys and make their use in marine environments more extensive.
Activate high-entropy ceramics with hydrofluoric acid. Prepare xHECBs/AZ31 composites by melting in a crucible resistance furnace. During the whole melting process, pass a mixed protective gas of 1 vol.% SF6 + 99 vol.% CO2. Observe and analyze the microstructure of the cast alloy using a metallographic microscope. Later, use an X-ray diffractometer to identify the phases of the alloy. Select a SEM scanning electron microscope (Zeiss GeminiSEM300 Oxford energy dispersive field emission electron microscope) for EDS energy spectrum analysis. For the corrosion performance test of the alloy, use the Reference 600+ electrochemical workstation of Gamry Company in the United States. Conduct tensile mechanical property tests using a tensile testing instrument (CMT6103 tensile instrument). Test the hardness of the alloy using a micro Vickers hardness tester (HVS-100 manual turret digital micro Vickers hardness tester).
1. After adding the HECB phase high-entropy ceramic, the three strong peaks shift to the right. The high-entropy ceramic phase is successfully integrated into the magnesium alloy. By comparing the peaks, it can be known that there are no obvious impurity phase peaks in the XRD pattern of the new magnesium alloy. The high-entropy ceramic phase causes a decrease in peak height, proving that the crystallinity becomes worse. The broadening of the peak width also proves that the crystallinity becomes worse, but the number of grains increases and the grains become smaller. The grain size decreases from 125-200 μm to 100-150 μm. 2. After adding the high-entropy ceramic phase to AZ31 magnesium alloy, its self-corrosion potential increases. The corrosion current density is lower than that of AZ31 magnesium alloy without adding high-entropy ceramic. And the corrosion current density of activated high-entropy ceramic/AZ31 magnesium alloy is lower than that of unactivated high-entropy ceramic/AZ31 magnesium alloy. The self-corrosion potential is increased to -1.398V, and the self-corrosion current density is decreased to 4.958×10 μA/cm. Its performance has a maximum increase of 0.5V in self-corrosion potential. In the impedance test, the impedance of activated high-entropy ceramic/AZ31 magnesium alloy is larger than that of unactivated high-entropy ceramic/AZ31 magnesium alloy. Compared with AZ31 magnesium alloy without adding high-entropy ceramic, the resistivity is increased by 92%. The radius of the Nyquist plot is 5-6 times larger. 3. The average values of the micro Vickers hardness of alloys with unactivated high-entropy ceramics (1%, 2%, and 5%) are 75.86HV, 85.68HV, and 92.24HV, respectively. After adding the phase high-entropy ceramic and activating treatment, compared with the unactivated high-entropy ceramic magnesium alloy, the hardness slightly decreases, which are 72.265HV and 83.415HV (the high-entropy ceramic content is 1% and 2%, respectively). For its tensile properties, after adding unactivated high-entropy ceramics to magnesium alloy, the yield strength stress will increase significantly, and the ultimate tensile strength will decrease significantly. The yield stress is increased from 29.6 MPa to 46.6 MPa, and can reach up to 671.3 MPa at most, but the elongation will decrease from 26.84% to 4.5% with the increase of high-entropy ceramic content. After activating the high-entropy ceramic, the elongation of the activated high-entropy ceramic reinforced magnesium alloy shows a significant increase compared with the unprocessed high-entropy ceramic reinforced magnesium alloy, and the yield stress is also significantly enhanced. Compared with before activation, the yield stress can be increased by 47.72% - 54.45%.
High-entropy ceramics can reduce the grain size of AZ31 magnesium alloy from 125-200 μm to 100-150 μm. When the content of high-entropy ceramics is 2%, the size of high-entropy ceramic powder is about 10-15 μm. After adding high-entropy ceramics, there are no obvious impurity phases. Adding high-entropy ceramics can effectively inhibit the Cl- pitting corrosion of magnesium alloy in 3.5% NaCl solution. In electrochemical tests, the addition of high-entropy ceramics shifts the corrosion potential of the material to the positive direction and reduces the corrosion current density. The 2% activated high-entropy ceramic reinforced magnesium alloy has the best corrosion resistance effect. Based on the combination of electrochemistry, analyzing the 2% content high-entropy ceramic reinforced phase, after adding high-entropy ceramics, the Vickers hardness and yield stress of magnesium alloy increase, while the ductility and ultimate stress will decrease. However, the ductility of the activated high-entropy ceramic reinforced phase is relatively better. In general, the 2% content activated high-entropy ceramic reinforced magnesium alloy has the best performance.
[1] |
王建强, 关绍康, 王迎新. RE对Mg-8Zn-4Al-0.3Mn镁合金阻尼性能的影响[J]. 材料科学与工程学报, 2004, (2): 280-283. DOI: 10.3969/j.issn.1673-2812.2004.02.030
WANG J Q, GUAN S K, WANG Y X. Effect of RE on damping properties of Mg-8Zn-4Al-0.3Mn magnesium alloy[J]. Journal of Materials Science and Engineering, 2004, (2): 280-283(in Chinese). DOI: 10.3969/j.issn.1673-2812.2004.02.030
|
[2] |
WINZER N, ATRENS A, SONG G, et al. A critical review of the stress corrosion cracking (SCC)of magnesium alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693. DOI: 10.1002/adem.200500071
|
[3] |
王晓鸽, 高克玮, 颜鲁春等. Ce对镁合金表面ZnAlCe-LDHs薄膜耐腐蚀性能的影响机理研究[J]. 中国腐蚀与防护学报, 2021, 41(3): 335-340.
WANG X G, GAO K W, YAN L C, et al. Effect of Ce on corrosion resistance of films of ZnAlCe-layered double hydroxides on Mg -alloy[J]. J. Chin. Soc. Corros. Prot., 2021, 41(3): 335-340(in Chinese).
|
[4] |
刘玉项, 徐安阳. AZ91镁合金和MAO涂层的点蚀行为研究[J]. 中国腐蚀与防护学报, 2022, 42(6): 1034-1042.
LIU Y X, XU A Y. Characterization of pitting corrosion behavior of AZ91 Mg-alloy without and with MAO coating[J]. J. Chin. Soc. Corros. Prot. , 2022, 42: 1034. (in Chinese)
|
[5] |
MARTIN Jönsson, DAN Persson, CHRISTOFER Leygraf. Atmosphericorrosion of field-exposed magnesium alloy AZ91D[J]. Corrosion Science, 2008, 50(5): 1406-1413. DOI: 10.1016/j.corsci.2007.12.005
|
[6] |
LIAO J S, HOTTA M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure[J]. Corrosio-nScience, 2015, 100: 353-364.
|
[7] |
杨秉烨, 卜少科, 吴博, 等, 挤压态AZ31镁合金板的电化学腐蚀行为[J]. 热加工工艺, 2023, 52(15): 34-37.
YANG B Y, BU S K, WU B, et a. Electrochemical corrosion b-ehavior of extruded AZ31 magnesium alloy plate[J]. Hot W-orking Technology, 2023. (in Chinese)
|
[8] |
周元庆. 镁钕合金防腐蚀性能研究[D]. 上海海洋大学, 2023.
ZHOU Y Q. Research on the corrosion resistance of magne-sium neodymium alloy[D]. Shang hai Ocean University, 2023.
|
[9] |
刘乃华, 华振虎, 蓝永庭. 石墨烯对AZ31镁合金在模拟体液中腐蚀性能的影响[J]. 有色金属工程, 2023, 13(6): 1-8. DOI: 10.3969/j.issn.2095-1744.2023.06.001
LIU N H, HUA Z H, LAN Y T. Effect of graphene on corrosion properties of AZ31 magnesium alloy in simulated body fluid[J]. Nonferrous Metals Engineering, 2023, 13(6): 1-8(in Chinese). DOI: 10.3969/j.issn.2095-1744.2023.06.001
|
[10] |
张鹏程. 氮缺位Ti2AlN颗粒制备及其增强AE44镁基复合材料的研究[D]. 北京交通大学, 2021.
ZHANG P C. Preparation of nitrogen-deficient Ti2AlN particles and research on its reinforced AE44 magnesium matrix composites[D]. Beijing Jiaotong University, 2021. (in Chinese)
|
[11] |
DONG L, MI G, LI C, et al. Effects of SiC particle volum-e fraction on microstructure and mechancial properties of Si-Cp/6061Al composites[J]. Integrated Ferroelectrics, 2020, 210(1): 215-226. DOI: 10.1080/10584587.2020.1728678
|
[12] |
叶东明, 韩鹏, 王文, 等. Co CrFeNi/6061Al复合材料冷喷摩擦复合增材制造及增强相影响规律研究[J]. 塑性工程学报, 2024, 31(3): 206-213. DOI: 10.3969/j.issn.1007-2012.2024.03.024
YE D M, HAN P, WANG W, et al. Research on cold spray friction composite additive manufacturing of CoCrFeNi/6061Al composites and the influence law of reinforcement phase[J]. Journal of Plasticity Engineering, 2024, 31(3): 206-213(in Chinese). DOI: 10.3969/j.issn.1007-2012.2024.03.024
|
[13] |
MA Y J, MA Y, WANG Q S, et al. High-entropy energy materials: challenges and new opportunities[J]. Energy& Environmental Science, 2021, 14(5): 2883-2905
|
[14] |
谢鸿翔, 项厚政, 马瑞奇等. 高熵陶瓷材料的研究进展[J]. 材料导报, 2022, 36(6): 61-68. DOI: 10.11896/cldb.20070201
XIE H X, XIANG H H, MA R Q, et al. Research progress of high-entropy ceramic materials[J]. Materials Reports, 2022, 36(6): 61-68(in Chinese). DOI: 10.11896/cldb.20070201
|
[15] |
WINZER N, ATRENS A, SONG, G. et al. A Critical Review of t-he Stress Corrosion Cracking(SCC)of Magnesium Alloys[J]. Advanced Engineering Materials, 2005, 7(8): 659-693 DOI: 10.1002/adem.200500071
|
[16] |
SONG G, Atrens A. Understanding magnesium corrosioa framework for improved alloy performance[J]. Advanced engineering materials, 2003, 5(12): 837-858. DOI: 10.1002/adem.200310405
|
[17] |
XING W Z, CUI J, GU C, et al. Superhard high-entropy decaboride with high electrical conductivity[J]. Scripta Materialia, 2022, 220: 114938. DOI: 10.1016/j.scriptamat.2022.114938
|
[18] |
DU X, D W, WANG Z H, et al. Ultra-high strengthening efficiency of graphene nanoplatelets resinforced magnesium matrix composites[J]. Materials Science& Engineering A, 2011, 7(11): 633-642.
|
[19] |
WANG N G, WANG R C, PENG C Q, et al. Corrosion behavior of Mg-Al-Pb and Mg-Al-Pb-Zn-Mn alloys in 3.5% NaCl solution[J]. Transactions of Nonferrous Metals Society of China, 2010, 20(10): 1936-1943. DOI: 10.1016/S1003-6326(09)60398-8
|
[20] |
LIU Z Y, LI X G, CHENG Y F. Electrochemical stat-e conversion model for occurrence of pitting corrosion on acathodically polarized carbon steel in a near-neutral pH solution[J]. Electrochimica Acta, 2011, 56(11): 4167-4175. DOI: 10.1016/j.electacta.2011.01.100
|
[21] |
BRETT C M A, DIAS L, TRINDADE B, et al. Characterisation by EIS of ternary Mg alloys synthesised by mechanical alloying[J]. Electrochimica Acta, 2006, 51(8-9): 1752-1760. DOI: 10.1016/j.electacta.2005.02.124
|
[22] |
MAKAR G L, KRUGER J L. Corrosion of magnesium[J]. International materials reviews, 1993, 38(3): 138-153. DOI: 10.1179/imr.1993.38.3.138
|
[23] |
CAO C N. Principle of corrosion electrochemistry[M], Press CI. Chemical Industry Press Beijing, 2004.
|
[24] |
GUADARRAMA-MUNOZ F, MENDOZA-FLORES J, DURAN ROMEROR, et al. Electrochemical study on magnesium anodes in Na-Cl and CaSO4–Mg (OH) 2aqueous solutions[J]. Electrochimi-ca acta, 2006, 51(8-9):
|
[25] |
王新印. 纯镁腐蚀行为研究: 基于扫描电化学显微镜产生/收集和反馈模式[D]. 浙江大学, 2015.
WANG X Y. Study on the corrosion behavior of pure- magnesium: Based on generation/collection and feedback modesof scanning electrochemical microscopy [D]. Zhejiang Univ-ersity, 2015. (in Chinese)
|
[26] |
杨汉章, 聂慧慧, 刘群峰, 等. 应力三轴度对AZ31镁合金断裂应变的影响[J]. 热加工工艺, 2024, 53(10): 133-136.
YANG H Z, NIE H H, LIU QF, et al. Effect of stress triaxiality on fracture strain of AZ31 magnesium alloy[J]. Hot Working Technology, 2024, 53(10): 133-136.
|
[27] |
李淑波, 吴海荣, 王朝辉, 等. Mg-Zn-Gd准晶增强AZ31镁基复合材料的摩擦磨损性能[J]. 中国有色金属学报, 2016, 26(4): 732-738.
LI S B, WU H R, WANG Z H, et al. Friction and wear p-roperties of Mg-Zn-Gd quasicrystal reinforced AZ31 magne-sium matrix composites[J]. The Chinese Journalof Nonferrous Metals, 2016, 26(4): 732-738.
|
[28] |
杨钊. 固相合成SCFs/AZ31镁基复合材料的组织演变及强化机制[D]. 哈尔滨理工大学, 2022.
YANG Z. Microstructure evolution and strengthening mecha-nism of SCFs/AZ31 magnesium matrix composites synthesized by solid-state method [D]. Harbin University of Science and Technology, 2022.
|
[1] | CHEN Shaojie, XU Haibing, ZHANG Xuehui, LIU Dong, YAN Chun, CHEN Gang, LYU Dongxi, ZHU Yingdan. Recent progress in carbon fiber electrodes for structural supercapacitors composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6010-6028. DOI: 10.13801/j.cnki.fhclxb.20230601.001 |
[2] | SONG Xiaoqi, LEI Xiping, FAN Kai, TIAN Tian, ZHU Hang. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339. DOI: 10.13801/j.cnki.fhclxb.20220628.002 |
[3] | ZHANG Yalin, WANG Mengqian, CHEN Xinggang, CAI Yanqing, XU Ying. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. DOI: 10.13801/j.cnki.fhclxb.20220412.002 |
[4] | MA Jinhuan, WEI Zhiqiang, LIANG Jiahao, LU Qiang, LI Chao, LI Ling. Hydrothermal method of rGO/Mo0.7Co0.3S2 nanocomposites for high-performance supercapacitor electrodes[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4580-4589. DOI: 10.13801/j.cnki.fhclxb.20211028.001 |
[5] | LIANG Zhiqi, HOU Congcong, CHANG Chunrui, ZHANG Zhiming, AN Libao. Effects of palladium/nickel doping on the electrochemical properties of carbon nanotubes electrode materials for supercapacitors[J]. Acta Materiae Compositae Sinica, 2022, 39(8): 3906-3914. DOI: 10.13801/j.cnki.fhclxb.20210930.002 |
[6] | NIE Wenqi, SUN Jiangdong, XU Shuai, XU Zhenzhen. Textile-based for supercapacitors: A review[J]. Acta Materiae Compositae Sinica, 2022, 39(3): 981-992. DOI: 10.13801/j.cnki.fhclxb.20211117.001 |
[7] | ZHAO Xuejing, SUN Xiaojun, WEI Jinzhi, ZHANG Ting, LIU Xinran. Electrochemical synthesis of Zn/Co-ZIF material and capacitive properties[J]. Acta Materiae Compositae Sinica, 2021, 38(5): 1543-1550. DOI: 10.13801/j.cnki.fhclxb.20200831.001 |
[8] | ZHAO Wenyu, WANG Zhenxiang, ZHENG Yuying, ZHANG Xiang, ZHOU Jun. Electrochemical performance of NiS2/3D porous reduce graphene oxide composite as electrode material for supercapacitors[J]. Acta Materiae Compositae Sinica, 2020, 37(2): 422-431. DOI: 10.13801/j.cnki.fhclxb.20190508.001 |
[9] | WU Kejia, DONG Limin, ZHANG Wanqi, LI Xuejiao, JIN Liguo, ZHANG Xianyou. Electrochemical properties of reduced graphene oxide/NixMn1-x/2O2 composites for supercapacitors[J]. Acta Materiae Compositae Sinica, 2018, 35(5): 1260-1268. DOI: 10.13801/j.cnki.fhclxb.20170620.001 |
[10] | CUI Lihua, WANG Yan, SHU Xia, CUI Jiewu, ZHANG Yong, WU Yucheng. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J]. Acta Materiae Compositae Sinica, 2016, 33(8): 1794-1802. DOI: 10.13801/j.cnki.fhclxb.20160418.002 |