Volume 40 Issue 3
Mar.  2023
Turn off MathJax
Article Contents
SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002
Citation: SONG Xiaoqi, LEI Xiping, FAN Kai, et al. Research progress of biomass derived carbon in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1328-1339. doi: 10.13801/j.cnki.fhclxb.20220628.002

Research progress of biomass derived carbon in supercapacitors

doi: 10.13801/j.cnki.fhclxb.20220628.002
  • Received Date: 2022-04-28
  • Accepted Date: 2022-06-18
  • Rev Recd Date: 2022-06-12
  • Available Online: 2022-06-29
  • Publish Date: 2023-03-15
  • Porous carbon is widely used as an electrode material in energy storage due to its large specific surface area, high durability and unique internal structure, but the development of new energy storage systems requires renewable, low-cost and environmentally friendly electrode materials. And biomass, as one of the most widely used renewable resources on earth, has great value for exploitation. At present, in the field of energy storage, biomass carbon based supercapacitors are favored by researchers for their excellent performance. This paper classifies biomass-derived carbon according to the source of carbon precursors, highlights the latest research results on biomass-derived carbon as electrode materials for supercapacitors, and finally discusses the challenges faced by biomass-derived carbon materials in building efficient energy storage systems.


  • loading
  • [1]
    POONAM, SHARMA K, ARORA A, et al. Review of supercapacitors: Materials and devices[J]. Journal of Energy Storage,2019,21:801-825. doi: 10.1016/j.est.2019.01.010
    RAZA W, ALI F, RAZA N, et al. Recent advancements in supercapacitor technology[J]. Nano Energy,2018,52:441-473. doi: 10.1016/j.nanoen.2018.08.013
    LI B, DAI F, XIAO Q, et al. Nitrogen-doped activated carbon for a high energy hybrid supercapacitor[J]. Energy & Environmental Science,2016,9(1):102-106.
    WANG Y, XIA Y. Recent progress in supercapacitors: From materials design to system construction[J]. Advanced Materials,2013,25(37):5336-5342. doi: 10.1002/adma.201301932
    SHAKER M, GHAZVINI A A S, CAO W, et al. Biomass-derived porous carbons as supercapacitor electrodes—A review[J]. New Carbon Materials,2021,36(3):546-572. doi: 10.1016/S1872-5805(21)60038-0
    王久臣, 戴林, 田宜水, 等. 中国生物质能产业发展现状及趋势分析[J]. 农业工程学报, 2007(9):276-282. doi: 10.3321/j.issn:1002-6819.2007.09.053

    WANG Jiuchen, DAI Lin, TIAN Yishui, et al. Analysis of the development status and trends of biomass energy industry in China[J]. Transactions of the Chinese Society of Agricultural Engineering,2007(9):276-282(in Chinese). doi: 10.3321/j.issn:1002-6819.2007.09.053
    AZWAR E, WAN MAHARI W A, CHUAH J H, et al. Transformation of biomass into carbon nanofiber for supercapacitor application—A review[J]. International Journal of Hydrogen Energy,2018,43(45):20811-20821. doi: 10.1016/j.ijhydene.2018.09.111
    KANG D, LIU Q, GU J, et al. "Egg-Box"-assisted fabrication of porous carbon with small mesopores for high-rate electric double layer capacitors[J]. ACS Nano,2015,9(11):11225-11233. doi: 10.1021/acsnano.5b04821
    ZHENG X, LUO J, LV W, et al. Two-dimensional porous carbon: Synthesis and ion-transport properties[J]. Advanced Materials,2015,27(36):5388-5395. doi: 10.1002/adma.201501452
    ANWAR Z, GULFRAZ M, IRSHAD M. Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: A brief review[J]. Journal of Radiation Research and Applied Sciences,2019,7(2):163-173.
    YANG H, YAN R, CHEN H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis[J]. Fuel,2007,86(12-13):1781-1788. doi: 10.1016/j.fuel.2006.12.013
    LUO W, SCHARDT J, BOMMIER C, et al. Carbon nanofibers derived from cellulose nanofibers as a long-life anode material for rechargeable sodium-ion batteries[J]. Journal of Materials Chemistry A, 2013, 1(36): 10662-10666.
    GIRGIS B S, SOLIMAN A M, FATHY N A. Development of micro-mesoporous carbons from several seed hulls under varying conditions of activation[J]. Microporous & Mesoporous Materials,2011,142(2-3):518-525.
    ZHAN Y, BAI J, GUO F, et al. Facile synthesis of biomass-derived porous carbons incorporated with CuO nanoparticles as promising electrode materials for high-performance supercapacitor applications[J]. Journal of Alloys and Compounds,2021,885:161014.
    NGUYEN N T, LE P A, PHUNG V. Biomass-derived carbon hooks on Ni foam with free binder for high performance supercapacitor electrode[J]. Chemical Engineering Science,2020,229:116053.
    ZHAN Y, ZHOU H, GUO F, et al. Preparation of highly porous activated carbons from peanut shells as low-cost electrode materials for supercapacitors[J]. Journal of Energy Storage,2021,34:102180.
    ZHANG S, TIAN K, CHENG B H, et al. Preparation of N-doped supercapacitor materials by integrated salt templating and silicon hard templating by pyrolysis of biomass wastes[J]. ACS Sustainable Chemistry & Engineering,2017,5(8):6682-6691.
    YANG H, YE S, ZHOU J, et al. Biomass-derived porous carbon materials for supercapacitor[J]. Frontiers in Chemistry,2019,7:274. doi: 10.3389/fchem.2019.00274
    YANG F, CHU J, CHENG Y, et al. Hydrothermal synthesis of NiCo-layered double hydroxide nanosheets decorated on biomass carbon skeleton for high performance supercapacitor[J]. Chemical Research in Chinese Universities,2020,37(3):772-777.
    MA H, CHEN Z, WANG X, et al. A simple route for hierarchically porous carbon derived from corn straw for supercapacitor application[J]. Journal of Renewable and Sustainable Energy, 2019, 11(2): 024012.
    ZHANG X, SUN B, FAN X, et al. Building relationships between molecular composition of carbon precursor and capacitance of a hierarchical porous carbon-based supercapacitor[J]. ACS Applied Energy Materials,2021,4(1):985-995. doi: 10.1021/acsaem.0c02915
    LIU D, YU S, SHEN Y, et al. Polyaniline coated boron doped biomass derived porous carbon composites for supercapacitor electrode materials[J]. Industrial & Engineering Chemistry Research,2015,54(50):12570-12579.
    OUYANG J, WANG X, WANG L, et al. Construction of a porous carbon skeleton in wood tracheids to enhance charge storage for high-performance supercapacitors[J]. Carbon,2022,196:532-539. doi: 10.1016/j.carbon.2022.05.011
    LOU X W D, ARCHER L A, YANG Z. Hollow micro-/nanostructures: Synthesis and applications[J]. Advanced Materials, 2008, 20(21): 3987-4019.
    ARAVINDAN V, GNANARAJ J, LEE Y S, et al. Insertion-type electrodes for nonaqueous Li-ion capacitors[J]. Chemical Reviews,2014,114(23):11619-11635. doi: 10.1021/cr5000915
    MA X, DING C, LI D, et al. A facile approach to prepare biomass-derived activated carbon hollow fibers from wood waste as high-performance supercapacitor electrodes[J]. Cellulose,2018,25(8):4743-4755. doi: 10.1007/s10570-018-1903-3
    CHANG J, GAO Z, WANG X, et al. Activated porous carbon prepared from paulownia flower for high performance supercapacitor electrodes[J]. Electrochimica Acta,2015,157:290-298. doi: 10.1016/j.electacta.2014.12.169
    WEI T, WEI X, YANG L, et al. A one-step moderate-explosion assisted carbonization strategy to sulfur and nitrogen dual-doped porous carbon nanosheets derived from camellia petals for energy storage[J]. Journal of Power Sources,2016,331:373-381. doi: 10.1016/j.jpowsour.2016.09.053
    TAN Y, XU Z, HE L, et al. Three-dimensional high graphitic porous biomass carbon from dandelion flower activated by K2FeO4 for supercapacitor electrode[J]. Journal of Energy Storage,2022,52:104889.
    RODRÍGUEZ-REINOSO F, MOLINA-SABIO M. Activated carbons from lignocellulosic materials by chemical and/or physical activation: An overview[J]. Carbon,1992,30(7):1111-1118. doi: 10.1016/0008-6223(92)90143-K
    PARK M H, YUN Y S, CHO S Y, et al. Waste coffee grounds-derived nanoporous carbon nanosheets for supercapacitors[J]. Carbon Letters,2016,19:66-71. doi: 10.5714/CL.2016.19.066
    WANG C H, WEN W C, HSU H C, et al. High-capacitance KOH-activated nitrogen-containing porous carbon material from waste coffee grounds in supercapacitor[J]. Advanced Powder Technology,2016,27(4):1387-1395. doi: 10.1016/j.apt.2016.04.033
    HE W, REN P G, DAI Z, et al. Hierarchical porous carbon composite constructed with 1-D CNT and 2-D GNS anchored on 3-D carbon skeleton from spent coffee grounds for supercapacitor[J]. Applied Surface Science,2021,588:149899.
    MENG D, WU C, HU Y, et al. Ingenious synthesis of chitosan-based porous carbon supercapacitors with large specific area by a small amount of potassium hydroxide[J]. Journal of Energy Storage,2022,51:104341.
    YU M, JI X, RAN F. Chemically building interpenetrating polymeric networks of Bi-crosslinked hydrogel macromolecules for membrane supercapacitors[J]. Carbohydrate Polymers: Scientific and Technological,2021,255:117346. doi: 10.1016/j.carbpol.2020.117346
    HU Y, TONG X, ZHUO H, et al. Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance[J]. ACS Sustainable Chemistry& Engineering,2017,5(10):8663-8674.
    周亚丽, 雷西萍, 于婷, 等. 壳聚糖碳气凝胶原位负载Fe3O4的制备及其电化学性能[J]. 硅酸盐学报, 2021, 49(10):2164-2171.

    ZHOU Yali, LEI Xiping, YU Ting, et al. Preparation and electrochemical properties of carbon aerogel in-situ loaded Fe3O4 based on chitosan[J]. Journal of the Chinese Ceramic Society,2021,49(10):2164-2171(in Chinese).
    YE W, CAI J, YU F, et al. Nitrogen-doped bagasse carbon spheres/graphene composite for high-performance supercapacitors[J]. Biomass and Bioenergy,2021,145:105949.
    ZHENG G, HUANG Z, LIU Z. Cooperative utilization of beet pulp and industrial waste fly ash to produce N/P/O self-co-doped hierarchically porous carbons for high-performance supercapacitors[J]. Journal of Power Sources,2021,482:228935.
    GHORBANI F, KAMARI S, ZAMANI S, et al. Optimization and modeling of aqueous Cr(VI) adsorption onto activated carbon prepared from sugar beet bagasse agricultural waste by application of response surface methodology[J]. Surfaces and Interfaces,2020,18:100444.
    OKONKWO C A, MENKITI M C, OBIORA-OKAFO I A, et al. Controlled pyrolysis of sugarcane bagasse enhanced mesoporous carbon for improving capacitance of supercapacitor electrode[J]. Biomass and Bioenergy,2021,146:105996.
    SARKAR S, ARYA A, GAUR U K, et al. Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors[J]. Biomass and Bioenergy,2020,142:105730.
    ZHANG Y, CHEN H, WANG S, et al. Facile fabrication and structure control of SiO2/carbon via in situ doping from liquefied bio-based sawdust for supercapacitor applications[J]. Industrial Crops and Products,2020,151:112490.
    LIU T, LAN Y, ZHU Q, et al. Potassium humate carbon derived from chlorination roast quenching of municipal sludge for high-performance supercapacitor electrodes[J]. Chemical Engineering Journal,2021,421(1):129993.
    WANG C, XIONG Y, WANG H, et al. Naturally three-dimensional laminated porous carbon network structured short nano-chains bridging nanospheres for energy storage[J]. Journal of Materials Chemistry A,2017,5(30):15759-15770. doi: 10.1039/C7TA04178K
    TENG Z, HAN K, LI J, et al. Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors[J]. Ultrasonics Sonochemistry,2020,60:104756. doi: 10.1016/j.ultsonch.2019.104756
    WANG Z, TAN Y, YANG Y, et al. Pomelo peels-derived porous activated carbon microsheets dual-doped with nitrogen and phosphorus for high performance electrochemical capacitors[J]. Journal of Power Sources,2018,378:499-510. doi: 10.1016/j.jpowsour.2017.12.076
    CHEN H, LEI X, YU T, et al. Ultra-high specific capacitance of self-doped 3 D hierarchical porous turtle shell-derived activated carbon for high-performance supercapacitors[J]. Ceramics International,2022,48(4):5289-5298. doi: 10.1016/j.ceramint.2021.11.072
    ZHAO J, GONG J, ZHOU C, et al. Utilizing human hair for solid-state flexible fiber-based asymmetric supercapacitors[J]. Applied Surface Science,2020,508:145260.
    ZHANG Y, HE J, GAO Z, et al. Converting eggs to flexible, all-solid supercapacitors[J]. Nano Energy,2019,65:104045.
    NIU J, SHAO R, LIANG J, et al. Biomass-derived mesopore-dominant porous carbons with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors[J]. Nano Energy,2017,36:322-330. doi: 10.1016/j.nanoen.2017.04.042
    TARIMO D J, OYEDOTUN K O, SYLLA N F, et al. Waste chicken bone-derived porous carbon materials as high performance electrode for supercapacitor applications[J]. Journal of Energy Storage,2022,51:104378.
    BREBU M, SPIRIDON I. Thermal degradation of keratin waste[J]. Journal of Analytical and Applied Pyrolysis,2011,91(2):288-295. doi: 10.1016/j.jaap.2011.03.003
    LIU W, FENG K, ZHANG Y, et al. Hair-based flexible knittable supercapacitor with wide operating voltage and ultra-high rate capability[J]. Nano Energy,2017,34:491-499. doi: 10.1016/j.nanoen.2017.03.022
    LI Z, XU Z, TAN X, et al. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors[J]. Energy & Environmental Science, 2013, 6(3): 871-878.
    LI F, WU X, JI W, et al. Effects of pyrolysis temperature on properties of swine manure biochar and its environmental risks of heavy metals[J]. Journal of Analytical and Applied Pyrolysis,2020,152:104945.
    BHATTACHARJYA D, YU J S. Activated carbon made from cow dung as electrode material for electrochemical double layer capacitor[J]. Journal of Power Sources,2014,262:224-231. doi: 10.1016/j.jpowsour.2014.03.143
    RAMALINGAM R J, SIVACHIDAMBARAM M, VIJAYA J J, et al. Synthesis of porous activated carbon powder formation from fruit peel and cow dung waste for modified electrode fabrication and application[J]. Biomass and Bioenergy,2020,142:105800.
    ZHANG C, ZHU X, CAO M, et al. Hierarchical porous carbon materials derived from sheep manure for high-capacity supercapacitors[J]. ChemSusChem,2016,9(9):932-937. doi: 10.1002/cssc.201501624
    ZHANG S, SU Y, ZHU S, et al. Effects of pretreatment and FeCl3 preload of rice husk on synthesis of magnetic carbon composites by pyrolysis for supercapacitor application[J]. Journal of Analytical and Applied Pyrolysis,2018,135:22-31. doi: 10.1016/j.jaap.2018.09.026
    DU W, WANG X, SUN X, et al. Nitrogen-doped hierarchical porous carbon using biomass-derived activated carbon/carbonized polyaniline composites for supercapacitor electrodes[J]. Journal of Electroanalytical Chemistry,2018,827:213-220. doi: 10.1016/j.jelechem.2018.09.031
    BARZEGAR F, BELLO A, DANGBEGNON J K, et al. Asymmetric supercapacitor based on activated expanded graphite and pinecone tree activated carbon with excellent stability[J]. Applied Energy,2017,207:417-426. doi: 10.1016/j.apenergy.2017.05.110
    MAHTO A, GUPTA R, GHARA K K, et al. Development of high-performance supercapacitor electrode derived from sugar industry spent wash waste[J]. Journal of Hazardous Materials,2017,340:189-201. doi: 10.1016/j.jhazmat.2017.06.048
    TIWARI B, JOSHI A, MUNJAL M, et al. Synergistic combination of N/P dual-doped activated carbon with redox-active electrolyte for high performance supercapacitors[J]. Journal of Physics and Chemistry of Solids,2022,161:110449.
    LIU M, NIU J, ZHANG Z, et al. Potassium compound-assistant synthesis of multi-heteroatom doped ultrathin porous carbon nanosheets for high performance supercapacitors[J]. Nano Energy,2018,51:366-372. doi: 10.1016/j.nanoen.2018.06.037
    HAO P, CUI G, SHI X, et al. High performance supercapacitors from hierarchical porous carbon aerogels based on sliced bread[J]. Chinese Journal of Chemistry,2017,35(5):699-706. doi: 10.1002/cjoc.201600722
    LI M, YU J, WANG X, et al. 3D porous MnO2@carbon nanosheet synthesized from rambutan peel for high-performing supercapacitor electrodes materials[J]. Applied Surface Science,2020,530:147230.
    TANG L, ZHOU Y, ZHOU X, et al. Enhancement in electrochemical performance of nitrogen-doped hierarchical porous carbon-based supercapacitor by optimizing activation temperature[J]. Journal of Materials Science: Materials in Electronics,2018,30(3):2600-2609.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(1)

    Article Metrics

    Article views (752) PDF downloads(73) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint