Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002
Citation: ZHANG Yalin, WANG Mengqian, CHEN Xinggang, et al. Research progress of application of Ti3C2TX MXenes materials in supercapacitors[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 678-687. doi: 10.13801/j.cnki.fhclxb.20220412.002

Research progress of application of Ti3C2TX MXenes materials in supercapacitors

doi: 10.13801/j.cnki.fhclxb.20220412.002
Funds:  Natural Science Foundation of Hebei Province ( E20209097); Science and Technology Project of Tangshan City (21130229C)
  • Received Date: 2022-01-25
  • Accepted Date: 2022-04-06
  • Rev Recd Date: 2022-03-25
  • Available Online: 2022-04-13
  • Publish Date: 2023-02-15
  • In recent years, the demand for energy storage equipment gradually increases, and supercapacitors are favored by researchers because of their excellent performances. Two dimensional transition MXenes are two-dimensional sheet materials similar to graphene, which have unique structure and rich functional groups. Ti3C2TX MXenes have the advantages of good conductivity, high specific area and high specific capacitance, and can be widely used as excellent electrode materials for supercapacitors. However, Ti3C2TX materials have the problems of easy oxidation and self-stacking, and needs to be modified and optimized as electrode materials. This paper mainly introduces the preparation methods of Ti3C2TX materials, such as HF etching, fluoride etching, alkali etching and electrochemical etching, as well as the research methods of performance modification of Ti3C2TX in the application process of supercapacitors, including the construction of Ti3C2TX porous structure, surface modification and preparation of Ti3C2TX composite electrode. The future progress trend of Ti3C2TX supercapacitors is also prospected.

     

  • loading
  • [1]
    XU B, GOGOTSI Y. MXenes: From discovery to applications[J]. Advanced Functional Materials,2020,30(47):2007011. doi: 10.1002/adfm.202007011
    [2]
    ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):1-17.
    [3]
    VERGER L, NATU V, CAREY M, et al. MXenes: An introduction of their synthesis, select properties, and applications[J]. Trends in Chemistry,2019,1(7):656-669. doi: 10.1016/j.trechm.2019.04.006
    [4]
    刘俊杰, 杨雯杰, 杨伟, 等. MXene基薄膜的有序组装及其在储能和电磁干扰屏蔽中的应用[J]. 复合材料学报, 2021, 38(8):2404-2417.

    LIU Junjie, YANG Wenjie, YANG Wei, et al. Ordered assembly of MXene based composite films and their applications in energy storage and electromagnetic interference shielding[J]. Acta Materiae Compositae Sinica,2021,38(8):2404-2417(in Chinese).
    [5]
    曾广勇, 王彬, 张俊, 等. 二维MXene膜的构筑及在水处理应用中的研究进展[J]. 复合材料学报, 2021, 38(7):2078-2091.

    ZENG Guangyong, WANG Bin, ZHANG Jun, et al. Construction of two-dimensional MXene membrane and its research progress of application in water treatment[J]. Acta Materiae Compositae Sinica,2021,38(7):2078-2091(in Chinese).
    [6]
    NAGUIB M, MASHTALIR O, CARLE J, et al. Two-dimensional transition metal carbides[J]. ACS Nano,2012,6(2):1322-1331. doi: 10.1021/nn204153h
    [7]
    NAGUIB M, MOCHALIN V N, BARSOUM M W, et al. 25th anniversary article: MXenes: A new family of two-dimensional materials[J]. Advanced Materials,2014,26(7):992-1005. doi: 10.1002/adma.201304138
    [8]
    SHAO Y, EL-KADY M F, SUN J, et al. Design and mecha-nisms of asymmetric supercapacitors[J]. Chemical Reviews,2018,118(18):9233-9280. doi: 10.1021/acs.chemrev.8b00252
    [9]
    HUI X, GE X, ZHAO R, et al. Interface chemistry on MXene-based materials for enhanced energy storage and conversion performance[J]. Advanced Functional Materials,2020,30(50):2005190. doi: 10.1002/adfm.202005190
    [10]
    BAI Y, LIU C, CHEN T, et al. MXene-copper/cobalt hybrids via Lewis acidic molten salts etching for high performance symmetric supercapacitors[J]. Angwandte Chemie International Edition,2021,60:25318-25322. doi: 10.1002/anie.202112381
    [11]
    SHAHZAD F, IQBAL A, HYERIM K, et al. 2D transition metal carbides (MXenes): Applications as an electrically conducting material[J]. Advanced Materials,2020,32:2002159. doi: 10.1002/adma.202002159
    [12]
    GUO Y, QI J, JIANG Y, et al. Performance of electrical double layer capacitors with porous carbons derived from rice husk[J]. Materials Chemistry and Physics,2003,80(3):704-709. doi: 10.1016/S0254-0584(03)00105-6
    [13]
    TEO E Y L, MUNIANDY L, NG E P, et al. High surface area activated carbon from rice husk as a high-performance supercapacitor electrode[J]. Electrochimica Acta,2016,192:110-119. doi: 10.1016/j.electacta.2016.01.140
    [14]
    ZHANG C, MA Y, ZHANG X, et al. Two-dimensional transition metal carbides and nitrides (MXene): Synthesis, properties, and electrochemical energy storage application[J]. Energy & Environmental Materials,2020,3(1):29-55.
    [15]
    HU M, ZHANG H, HU T, et al. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects[J]. Chemical Society Reviews,2020,49(18):6666-6693. doi: 10.1039/D0CS00175A
    [16]
    FANG R, LU C, CHEN A, et al. 2D MXene-based energy storage materials: Interfacial structure design and functionalization[J]. ChemSusChem,2019,13(6):1409-1419.
    [17]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-diomensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. doi: 10.1002/adma.201102306
    [18]
    SRIVASTAVA P, MISHRA A, MIZUSEKI H, et al. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene[J]. ACS Applied Materials & Interfaces,2016,8(36):24256-24264.
    [19]
    WANG X, SHEN X, GAO Y, et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X[J]. Journal of the American Chemical Society,2015,137(7):2715-2721. doi: 10.1021/ja512820k
    [20]
    ANASORI B, XIE Y, BEIDAGHI M, et al. Two-dimensional, ordered, double transition metals carbides (MXene)[J]. ACS Nano,2015,9(10):9507-9516. doi: 10.1021/acsnano.5b03591
    [21]
    ANASORI B, SHI C, MOON E J, et al. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers[J]. Nanoscale Horizons,2016,1(3):227-234. doi: 10.1039/C5NH00125K
    [22]
    LI Y, DENG Y, ZHANG J, et al. ConTunable energy storage capacity of two-dimensional Ti3C2TX modified by a facile two-step pillaring strategy for high performance supercapacitor electrodes[J]. Nanoscale,2019,11(45):21981-21989. doi: 10.1039/C9NR07259D
    [23]
    HALIM J, KOTA S, LUKATSKAYA M R, et al. Synthesis and characterization of 2D molybdenum carbide (MXene)[J]. Advanced Functional Materials,2016,26(18):3118-3127. doi: 10.1002/adfm.201505328
    [24]
    SHE Z W, FREDRICKSON K D, ANASORI B, et al. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution[J]. ACS Energy Letters,2016,1(3):589-594. doi: 10.1021/acsenergylett.6b00247
    [25]
    PANG J, MENDES R G, BACHMATIUK A, et al. Applications of 2D MXenes in energy conversion and storage systems[J]. Chemical Society Reviews,2019,48(1):72-133. doi: 10.1039/C8CS00324F
    [26]
    ZHANG X, LIU Y, DONG S, et al. Surface modified MXene film as flexible electrode with ultrahigh volumetric capacitance[J]. Electrochimica Acta,2019,294:233-239. doi: 10.1016/j.electacta.2018.10.096
    [27]
    LI T, YAO L, LIU Q, et al. Fluorine-free synthesis of high-purity Ti3C2TX (T=OH, O) via alkali treatment[J]. Angewandte Chemie International Edition,2018,57(21):6115-6119. doi: 10.1002/anie.201800887
    [28]
    LI J, YUAN X T, LIN C, et al. Achieving high pseudo capacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification[J]. Advanced Energy Materials,2017,7(15):1602725. doi: 10.1002/aenm.201602725
    [29]
    SUN W, SHAH S, CHEN Y, et al. Electrochemical etching of Ti2AlC to Ti2CTX (MXene) in low-concentration hydrochloric acid solution[J]. Journal of Materials Chemistry A,2017,5(41):21663-21668. doi: 10.1039/C7TA05574A
    [30]
    PANG S Y, WONG Y T, YUAN S, et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials[J]. Journal of the American Chemical Society,2019,141(24):9610-9616. doi: 10.1021/jacs.9b02578
    [31]
    LI Y, SHAO H, LIN Z, et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte[J]. Nature Materials,2020,19(8):894-899. doi: 10.1038/s41563-020-0657-0
    [32]
    XU C, WANG L, LIU Z, et al. Large-area high-quality 2D ultrathin MO2C superconducting crystals[J]. Nature Materials,2015,14(11):1135-1141. doi: 10.1038/nmat4374
    [33]
    LUKATSKAYA M R, MASHTALIR O, REN C E, et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide[J]. Science,2013,341(6153):1502-1505. doi: 10.1126/science.1241488
    [34]
    SHPIGEL N, LEVI M D, SIGALOV S, et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique[J]. Journal of the American Chemical Society,2018,140(28):8910-8917. doi: 10.1021/jacs.8b04862
    [35]
    OKUBO M, SUGAHARA A, KAJIYAMA S, et al. MXene as a charge storage host[J]. Accounts of Chemical Research,2018,51(3):591-599. doi: 10.1021/acs.accounts.7b00481
    [36]
    LEVI M D, LUKATSKAYA M R, SIGALOV S, et al. Solving the capacitive paradox of 2D MXene using electrochemical quartz-crystal admittance and in situ electronic conductance measurements[J]. Advanced Energy Materials,2015,5(1):1400815. doi: 10.1002/aenm.201400815
    [37]
    SUGAHARA A, ANDO Y, KAJIYAMA S, et al. Negative dielectric constant of water confined in nanosheets[J]. Nature Communications,2019,10(1):1-7. doi: 10.1038/s41467-018-07882-8
    [38]
    ZHENG L, HUA Q, LI X, et al. Investigation on the effect of Nb doping on the oxidation mechanism of Ti3SiC2[J]. Corrosion Science,2018,140(1):374-378. doi: 10.1016/j.corsci.2018.05.028
    [39]
    ZANG X, WANG J, QIN Y, et al. Enhancing capacitance performance of Ti3C2TX Mxene as electrode materials of supercapacitor: From controlled preparation to composite structure construction[J]. Nano-Micro Letters,2020,12(1):1-24. doi: 10.1007/s40820-019-0337-2
    [40]
    LI L, WEN J, ZHANG X. Progress of two-dimensional Ti3C2TX in supercapacitors[J]. ChemSusChem,2020,13(6):1296-1329. doi: 10.1002/cssc.201902679
    [41]
    LUO J, MATIOS E, WANG H, et al. Interfacial structure design of MXene-based nanomaterials for electrochemical energy storage and conversion[J]. InfoMat,2020,2(6):1057-1076. doi: 10.1002/inf2.12118
    [42]
    DENG Y, SHANG T, WU Z, et al. Fast gelation of Ti3C2TX MXene initiated by metal ion[J]. Advanced Materials,2019,31(43):1902432. doi: 10.1002/adma.201902432
    [43]
    ZHOU Z, LIU J, ZHANG X, et al. Ultrathin MXene/calcium alginate aerogel film for high-performance electromagnetic interference shielding[J]. Advanced Materials Interfaces,2019,6(6):1802040. doi: 10.1002/admi.201802040
    [44]
    ZHANG P, ZHU Q, RAZIUM A, et al. In situ ice template approach to fabricate 3D flexible MXene film-based electrode for high performance supercapacitors[J]. Advanced Functional Materials,2020,30:2000922. doi: 10.1002/adfm.202000922
    [45]
    ZHAO M Q, XIE X, REN C E, et al. Hollow MXene spheres and 3D microporous MXene frameworks for Na-ion storage[J]. Advanced Materials,2017,29(37):1702410. doi: 10.1002/adma.201702410
    [46]
    TANG J, HUANG X, QIU T, et al. Interlayer space engineering of MXenes for electrochemical energy storage applications[J]. Chemistry—A European Journal, 2021, 27(6): 1921-1940.
    [47]
    GAO L, BAO W, ARTEM V K, et al. Hetero-MXenes: Theory, synthesis, and emerging applications[J]. Advanced Materials,2021,33:2004129. doi: 10.1002/adma.202004129
    [48]
    GHIDIU M, LUKATSKAYA M R, ZHAO M Q, et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance[J]. Nature,2014,516(7529):78-81. doi: 10.1038/nature13970
    [49]
    MASHTALIR O, NAGUIB M, MOCHALIN V N, et al. Intercalation and delamination of layered carbides and carbonitrides[J]. Nature Communications,2013,4(1):1-7.
    [50]
    GHIDIU M, KOTA S, HALIM J, et al. Alkylammonium cation intercalation into Ti3C2(MXene): Effects on properties and ion-exchange capacity estimation[J]. Chemistry of Materials,2017,29(3):1099-1106. doi: 10.1021/acs.chemmater.6b04234
    [51]
    LI Z, WANG L, SUN D, et al. Synthesis and thermal stability of two-dimensional carbide MXene Ti3C2[J]. Materials Science and Engineering: B,2015,191:33-40. doi: 10.1016/j.mseb.2014.10.009
    [52]
    LUO J, ZHENG J, NAI J, et al. Atomic sulfur covalently engineered interlayers of Ti3C2 MXene for ultra-fast sodium-ion storage by enhanced pseudocapacitance[J]. Advanced Functional Materials,2019,29(10):1808107. doi: 10.1002/adfm.201808107
    [53]
    WEN Y, RUFFORD T E, CHEN X, et al. Nitrogen-doped Ti3C2TX MXene electrodes for high-performance supercapacitors[J]. Nano Energy,2017,38:368-376. doi: 10.1016/j.nanoen.2017.06.009
    [54]
    ZHAO M Q, REN C E, LING Z, et al. Flexible MXene/carbon nanotube composite paper with high volumetric capacitance[J]. Advanced Functional Materials,2015,27(2):339-345. doi: 10.1002/adma.201404140
    [55]
    李学林. 二维Ti3C2TX基复合材料的改性及其超级电容器性能研究[D]. 西安: 陕西科技大学, 2021.

    LI Xuelin. Study on modification of two-dimensional Ti3C2TX-based composites and their supercapacitor pro-perties[D]. Xi'an: Shaanxi University of Science and Technology, 2021(in Chinese).
    [56]
    LE T A, TRAN N Q, HONG Y, et al. Intertwined titanium carbide MXene within a 3D tangled polypyrrole nanowires matrix for enhanced supercapacitor performances[J]. Chemistry-A European Journal,2019,25(4):1037-1043.
    [57]
    黄兰香, 罗旭峰. 用于可充电水性锌离子电池的先进Ti3C2@ε-MnO2电极[J]. 复合材料学报, 2022, 39(10):4631-4641.

    HUANG Lanxiang, LUO Xufeng. Advanced Ti3C2@ε-MnO2 cathode as rechargeable aqueous zinc-ion batteries[J]. Acta Materiae Compositae Sinica,2022,39(10):4631-4641(in Chinese).
    [58]
    崔丽华, 王岩, 舒霞, 等. MnO2/TiO2复合物电极的制备及超级电容性能[J]. 复合材料学报, 2016, 33(8):1794-1802.

    CUI Lihua, WANG Yan, SHU Xia, et al. Preparation and supercapacitive performance of MnO2/TiO2 composite electrodes[J]. Acta Materiae Compositae Sinica,2016,33(8):1794-1802(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article Metrics

    Article views (1115) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return