CAI Xiaoyan, CHEN Zihao, MAO Liang. Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5993-6002. DOI: 10.13801/j.cnki.fhclxb.20240717.002
Citation: CAI Xiaoyan, CHEN Zihao, MAO Liang. Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution[J]. Acta Materiae Compositae Sinica, 2024, 41(11): 5993-6002. DOI: 10.13801/j.cnki.fhclxb.20240717.002

Core-shell structured CoxHyPO4/NiCo2S4 composites towards electrocatalytic oxygen evolution

Funds: National Natural Science Foundation of China (22309204; 22209203); China Postdoctoral Science Foundation (2023M733742); Material Science and Engineering Discipline Guidance Fund of China University of Mining and Technology (CUMTMS202202; CUMTMS202207)
More Information
  • Received Date: May 06, 2024
  • Revised Date: July 02, 2024
  • Accepted Date: July 04, 2024
  • Available Online: July 17, 2024
  • Published Date: July 17, 2024
  • Exploring non-precious metal oxygen evolution reaction (OER) electrocatalysts with high activity and stability is pivotal for electrolytic hydrogen production. Herein, we employ a photo-reduction deposition technique to load amorphous cobalt hydrogen phosphate (CoxHyPO4, denoted as Co-Pi) onto the surface of porous NiCo2S4 (NCS) yolk-shell microspheres, successfully fabricating Co-Pi/NCS composite material. Through the integration of density functional theory (DFT) calculations with experimental investigations, the influence of Co-Pi introduction on the electronic structure and electrocatalytic performance of NCS is probed. The formation of heterogeneous interfaces and reconstruction of chemical bonds enhance the conductivity of Co-Pi/NCS, and modulate charge transfer between the catalyst and reaction intermediates, thereby altering adsorption strength and Gibbs free energy of the reaction, ultimately optimizing OER catalytic activity. Consequently, Co-Pi/NCS demonstrates commendable activity and durability, exhibiting low overpotential of 335 mV at current density of 10 mA·cm−2 and maintaining prolonged stability for 14 h in 1 mol/L KOH solution. This work holds promise for advancing the utilization of transition metal sulfides in electrochemical oxygen production processes.

  • [1]
    ZANG Y, LU D Q, WANG K, et al. A pyrolysis-free Ni/Fe bimetallic electrocatalyst for overall water splitting[J]. Nature Communications, 2023, 14: 1792. DOI: 10.1038/s41467-023-37530-9
    [2]
    赖嘉俊, 李潇潇, 曾传旺, 等. 富氧空位铁基复合材料的制备及其电催化析氢性能[J]. 复合材料学报, 2023, 40(5): 2827-2835.

    LAI Jiajun, LI Xiaoxiao, ZENG Chuanwang, et al. Preparation of oxygen-rich vacancy iron-matrix composites and their electrocatalytic hydrogen evolution properties[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2827-2835 (in Chinese).
    [3]
    PONNADA S, KIAI M S, GORLD D B, et al. Recent status and challenges in multifunctional electrocatalysis based on 2D MXenes[J]. Catalysis Science & Technology, 2022, 12(14): 4413-4441.
    [4]
    DENG Y W, CAO Y F, XIA Y, et al. Self-templated synthesis of CoFeP@C cage-in-cage superlattices for enhanced electrocatalytic water splitting[J]. Advanced Energy Materials, 2022, 12: 2202394. DOI: 10.1002/aenm.202202394
    [5]
    张海成, 杨邦志, 张娇, 等. 钴掺杂铜基复合材料的制备及其电催化析氧性能[J]. 复合材料学报, 2024, 41(4): 1923-1933.

    ZHANG Haicheng, YANG Bangzhi, ZHANG Jiao, et al. Synthesis and electrocatalytic oxygen evolution performance of cobalt doped copper-based composites[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1923-1933(in Chinese).
    [6]
    姜金池, 金彪, 孟龙月. 基于电催化析氧反应的非贵金属催化剂研究进展[J]. 复合材料学报, 2023, 40(3): 1365-1380.

    JIANG Jinchi, JIN Biao, MENG Longyue. Research progress on non-noble metal catalysts based on electrocatalytic oxygen evolution reactions[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1365-1380(in Chinese).
    [7]
    CAI X Y, ZENG Z T, LIU Y D, et al. Visible-light-driven water splitting by yolk-shelled ZnIn2S4-based heterostructure without noble-metal co-catalyst and sacrificial agent[J]. Applied Catalysis B: Environmental, 2021, 297: 120391.
    [8]
    DAI W J, PAN Y, REN K, et al. Heteroatom Ni alloyed pyrite-phase FeS2 as a precatalyst for enhanced oxygen evolution reaction[J]. Electrochimica Acta, 2020, 355: 136821. DOI: 10.1016/j.electacta.2020.136821
    [9]
    LAN M Q, XIE C Y, LI B, et al. Two-dimensional cobalt sulfide/iron-nitrogen-carbon holey sheets with improved durability for oxygen electrocatalysis[J]. ACS Applied Materials & Interfaces, 2022, 14(9): 11538-11546.
    [10]
    LIN J H, WANG H H, CAO J, et al. Engineering Se vacancies to promote the intrinsic activities of P doped NiSe2 nanosheets for overall water splitting[J]. Journal of Colloid and Interface Science, 2020, 571: 260-266. DOI: 10.1016/j.jcis.2020.03.053
    [11]
    EL-REFAEI S M, RUSSO P A, PINNA N. Recent advances in multimetal and doped transition-metal phosphides for the hydrogen evolution reaction at different pH values[J]. ACS Applied Materials & Interfaces, 2021, 13(19): 22077-22097.
    [12]
    MA G Y, YE J T, QIN M Y, et al. Mn-doped NiCoP nanopin arrays as high-performance bifunctional electrocatalysts for sustainable hydrogen production via overall water splitting[J]. Nano Energy, 2023, 115: 108679. DOI: 10.1016/j.nanoen.2023.108679
    [13]
    LIN Y, CHEN X M, TUO Y X, et al. In-situ doping-induced lattice strain of NiCoP/S nanocrystals for robust wide pH hydrogen evolution electrocatalysis and supercapacitor[J]. Journal of Energy Chemistry, 2022, 70: 27-35. DOI: 10.1016/j.jechem.2022.02.024
    [14]
    CHEN T, WEI S T, WANG Z H. NiCo2S4-based composite materials for supercapacitors[J]. ChemPlusChem, 2020, 85(1): 43-56. DOI: 10.1002/cplu.201900288
    [15]
    孙兴伟, 白杰, 李春萍, 等. 钴基电极材料的改性策略及其应用研究[J]. 复合材料学报, 2023, 40(5): 2550-2565.

    SUN Xingwei, BAI Jie, LI Chunping, et al. Modification strategy and application of cobalt-based electrode materials[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2550-2565(in Chinese).
    [16]
    CHEN Y T, WU H Y, TANG N, et al. A NiCo2S4 octahedral configuration doped by Mn, Zn and Cu for the oxygen evolution reaction[J]. Chemical Communiations, 2024, 60: 1751.
    [17]
    LIU C C, ZHANG X, HAO X Q, et al. NiCO2S4 nanotubes in situ anchored double-layered hollow carbon nanospheres towards enhanced overall water splitting[J]. Journal of Alloys and Compounds, 2024, 1002: 175110. DOI: 10.1016/j.jallcom.2024.175110
    [18]
    BAI L, SONG A L, LEI X Y, et al. Hierarchical construction of hollow NiCo2S4 nanotube@NiCo2S4 nanosheet arrays on Ni foam as an efficient and durable electrocatalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(19): 38524-38532.
    [19]
    SONG W J, XU M Z, TENG X, et al. Construction of self-supporting, hierarchically structured caterpillar-like NiCo2S4 arrays as an efficient trifunctional electrocatalyst for water and urea electrolysis[J]. Nanoscale, 2021, 13(3): 1680-1688.
    [20]
    李群, 张阔, 李艳华, 等. 三维多级钴酸镍结构的形貌调控及其电化学性能[J]. 复合材料学报, 2024, 41(1): 281-292.

    LI Qun, ZHANG Kuo, LI Yanhua, et al. Morphology control and electrochemical properties of three-dimensional hierarchical NiCo2O4 structure[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 281-292(in Chinese).
    [21]
    JIANG R Q, MAO L, ZHAO Y L, et al. Spatial carrier separation in cobalt phosphate deposited ZnIn2S4 nanosheets for efficient photocatalytic hydrogen evolution[J]. Journal of Colloid and Interface Science, 2022, 606: 317-327. DOI: 10.1016/j.jcis.2021.08.008
    [22]
    RADHIKA M G, SRILAKSHMI R, TEJASHREE V, et al. A new strategy for the morphology-controlled synthesis of Ni/Co MOFs for high-performance asymmetric supercapacitors[J]. Journal of Energy Storage, 2023, 61: 106766. DOI: 10.1016/j.est.2023.106766
    [23]
    BLOCHL P E. Projector augmented-wave method[J]. Physical Review B, 1994, 50: 17953-17979.
    [24]
    龙升, 刘依, 邹攀, 等. 球状NiCo2S4的制备及其在KOH溶液中的电化学行为[J/OL]. 复合材料学报, 1-8[2024-09-29]. 网址: doi.org/10.13801/j.cnki.fhclxb.20240626.002.

    LONG Sheng, LIU Yi, ZOU Pan, et al. Preparation of spherical NiCo2S4 and the electrochemical behavior in KOH solution[J/OL]. Acta Materiae Compositae Sinica, 1-8[2024-09-29]. Website: doi.org/10.13801/j.cnki.fhclxb.20240626.002(in Chinese).
    [25]
    朱彬, 刘盼, 吕东风. NiCo2O4纳米线/SiC复合纤维制备及其电化学性能[J]. 复合材料学报, 2020, 37(7): 1684-1694.

    ZHU Bin, LIU Pan, LYU Dongfeng. Preparation and electrochemistry properties of NiCo2O4 nanowire/SiC composite fiber[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1684-1694(in Chinese).
    [26]
    CHEN J, MAO L, XU J C, et al. Synergetic effect of phosphorus-dopant and graphene-covering layer on hydrogen evolution activity and durability of NiCo2S4 electrocatalysts[J]. Science China Materials, 2023, 66(10): 3875-3886. DOI: 10.1007/s40843-023-2546-3
    [27]
    LU X F, ZHANG S L, SIM W L, et al. Phosphorized CoNi2S4 yolk-shell spheres for highly efficient hydrogen production via water and urea electrolysis[J]. Angewandte Chemie International Edition, 2021, 60(42): 22885-22891. DOI: 10.1002/anie.202108563
    [28]
    YAO L L, YANG W X, NIU Y J, et al. Comparison of the effects of cation and phosphorus doping in cobalt-based spinel oxides towards the oxygen evolution reaction[J]. CrystEngComm, 2021, 23: 1849-1858. DOI: 10.1039/D0CE01771J
    [29]
    NIU Y, XIAO M L, ZHU J B, et al. A "trimurti" heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries[J]. Journal of Materials Chemistry A, 2020, 8: 9177-9184. DOI: 10.1039/D0TA01145B
    [30]
    JIN W, CHEN J P, LIU B, et al. Oxygen vacancy-rich in-doped CoO/CoP heterostructure as an effective air cathode for rechargeable Zn-air batteries[J]. Small, 2019, 15: 1904210. DOI: 10.1002/smll.201904210
    [31]
    JIA F H, ZOU X Y, WEI X Y, et al. Synergistic effect of P doping and Mo-Ni-based heterostructure electrocatalyst for overall water splitting[J]. Materials, 2023, 16(9): 3411. DOI: 10.3390/ma16093411
    [32]
    LI J C, LI W Q, MI H W, et al. Bifunctional oxygen electrocatalysis on ultra-thin Co9S8/MnS carbon nanosheets for all-solid-state zinc-air batteries[J]. Journal of Materials Chemistry A, 2021, 9: 22635-22642. DOI: 10.1039/D1TA07019C
    [33]
    GUO Z, PANG Y Y, XIE H, et al. Phosphorus-doped CuCo2O4 oxide with partial amorphous phase as a robust electrocatalyst for the oxygen evolution reaction[J]. ChemElectroChem, 2021, 8: 135-141. DOI: 10.1002/celc.202001312
    [34]
    ZHANG L G, PANG D, CAO X L, et al. Phosphorus modified hollow, porous nickel-cobalt oxides nanocubes with heterostructure for oxygen evolution reaction in alkaline[J]. Journal of Alloys and Compounds, 2022, 925: 166338. DOI: 10.1016/j.jallcom.2022.166338
    [35]
    ZHAO S, MO Z L, NIU X H, et al. Hierarchical NiCo2S4 nanosheets grown on graphene to catalyze the oxygen evolution reaction[J]. Energy Materials, 2020, 55: 1627-1636.
    [36]
    PENG X F, WANG Z. Facile route of P-doped defect-rich manganese-cobalt oxide spinel with enhanced oxygen evolution reaction performance[J]. ChemNanoMat, 2020, 6(12): 1812-1818. DOI: 10.1002/cnma.202000475
    [37]
    CHEN C, SU H, LU L N, et al. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis[J]. Chemical Engineering Journal, 2021, 408: 127814-127823. DOI: 10.1016/j.cej.2020.127814
  • Related Articles

    [1]YANG Xujing, ZHANG Liangsheng, LI Maojun, YU Zhiwei, FANG Wenjun. Influence of ultrasonic vibration on curing kinetics of rapid curing epoxy resin system[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2470-2481. DOI: 10.13801/j.cnki.fhclxb.20210601.005
    [2]JIA Yuan, YANG Juxiang, ZENG Sha, LIU Zhen. Curing reaction kinetics on SiO2 contained benzoxazine/bismaleimide composites system[J]. Acta Materiae Compositae Sinica, 2021, 38(2): 536-544. DOI: 10.13801/j.cnki.fhclxb.20200630.001
    [3]CHEN Yufei, LI Zhiguo, LIU Yulong, TENG Chengjun, CUI Weiwei. Reaction kinetics and mechanical properties of Al2O3/epoxy-cyanate ester composites[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 749-757. DOI: 10.13801/j.cnki.fhclxb.20190619.001
    [4]CHENG Huanbo, HUANG Haihong, LIU Zhifeng, ZHAO Zhipei, JING Deqi. Reaction kinetics of degradation of carbon fiber-reinforced plastic in supercritical n-butanol[J]. Acta Materiae Compositae Sinica, 2016, 33(9): 1922-1930. DOI: 10.13801/j.cnki.fhclxb.20151112.003
    [5]LI Weidong, ZHANG Jindong, LIU Gang, ZHONG Xiangyu, ZHANG Daijun, BAO Jianwen, ZHAO Yan. Curing reaction kinetics and TTT diagram of high toughness bismaleimide resin[J]. Acta Materiae Compositae Sinica, 2016, 33(7): 1475-1483. DOI: 10.13801/j.cnki.fhclxb.20151030.001
    [6]Oxidation kinetics of ZrO2-C-ZrB2 composites[J]. Acta Materiae Compositae Sinica, 2009, 26(01): 103-107.
    [7]ZHU He-guo, WU Shen-qing, WANG Hen-zhi, WU Qiang, WEI Zhong-shan. KINETIC ANALYSIS ON Al-TiO2 SYSTEM BY XD SYNTHESIS TECHNOLOGY[J]. Acta Materiae Compositae Sinica, 2002, 19(1): 28-31.
    [8]KOU Sheng-zhong, XU Guang-ji, DING Yu-tian, SU Pei-hua. KINETIC MECHANISM OF THE XD REACTION IN Al-TiO2-C SYSTEM[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 115-118.
    [9]Liang Bin, Ma Ruiran. STUDY OF THE MODERATE TEMPERATURE CURING EPOXY RESIN——Ⅱ.Investigation on the apparent kinetics of the curing reaction[J]. Acta Materiae Compositae Sinica, 1993, 10(2): 85-89.
    [10]Wu Jianxin, Li Pengxing, Wu Renjie, Shi Beipei. KINETICS OF INTERFACIAL REACTION C/AI COMPOSITE MATERIALS[J]. Acta Materiae Compositae Sinica, 1992, 9(2): 77-81.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (153) PDF downloads (20) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return