Citation: | JIANG Minqiang, HU Dongyuan, DONG Chenhao, et al. Design and fabrication techniques for typical structural-functional integrated composites[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4457-4477. doi: 10.13801/j.cnki.fhclxb.20240731.001 |
[1] |
GUO M, YI X, RUDD C, et al. Preparation of highly electrically conductive carbon-fiber composites with high interlaminar fracture toughness by using silver-plated interleaves[J]. Composites Science and Technology, 2019, 176: 29-36. doi: 10.1016/j.compscitech.2019.03.014
|
[2] |
GAZTELUMENDI I, CHAPARTEGUI M, SEDDON R, et al. Enhancement of electrical conductivity of composite structures by integration of carbon nanotubes via bulk resin and/or buckypaper films[J]. Composites Part B: Engineering, 2017, 122: 31-40. doi: 10.1016/j.compositesb.2016.12.059
|
[3] |
CHENG C, ZHANG C, ZHOU J, et al. Improving the interlaminar toughness of the carbon fiber/epoxy composites via interleaved with polyethersulfone porous films[J]. Composites Science and Technology, 2019, 183: 107827. doi: 10.1016/j.compscitech.2019.107827
|
[4] |
HU D, YI X, JIANG M, et al. Development of highly electrically conductive composites for aeronautical applications utilizing bi-functional composite interleaves[J]. Aerospace Science and Technology, 2020, 98: 105669. doi: 10.1016/j.ast.2019.105669
|
[5] |
Engineering Directorate. ATS airbus targe specification, ATS05-0003[R]. Blagnac Cedex: AIRBUS, 2012.
|
[6] |
LONJON A, DEMONT P, DANTRAS E, et al. Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes[J]. Journal of Non-Crystalline Solids, 2012, 358(15): 1859-1862. doi: 10.1016/j.jnoncrysol.2012.05.038
|
[7] |
ZHAO Z J, XIAN G J, YU J G, et al. Development of electrically conductive structural BMI based CFRPs for lightning strike protection[J]. Composites Science and Technology, 2018, 167: 555-562. doi: 10.1016/j.compscitech.2018.08.026
|
[8] |
LOCHOT C, SLOMIANOWSHI D. A350 XWB electrical structure network[J]. Airbus Technical Magazine, 2014, 1: 20-25.
|
[9] |
KUMAR V, YOKOZEKI T, OKADA T, et al. Effect of through-thickness electrical conductivity of CFRPs on lightning strike damages[J]. Composites Part A: Applied Science and Manufacturing, 2018, 114: 429-438. doi: 10.1016/j.compositesa.2018.09.007
|
[10] |
HU D, ZHANG X, LIU X, et al. Study on toughness improvement of a rosin-sourced epoxy matrix composite for green aerospace application[J]. Journal of Composites Science, 2020, 4(4): 168. doi: 10.3390/jcs4040168
|
[11] |
TANG Y, YE L, ZHANG Z, et al. Interlaminar fracture toughness and CAI strength of fibre-reinforced composites with nanoparticles–A review[J]. Composites Science and Technology, 2013, 86: 26-37. doi: 10.1016/j.compscitech.2013.06.021
|
[12] |
BAEKERS B. Composite technology at airbus[C]//International Symposium on Manufacturing for Composite Aircraft Structures. Braunschweig, 2004.
|
[13] |
HäNNINEN O, KNOL A B, JANTUNEN M, et al. Environmental burden of disease in Europe: assessing nine risk factors in six countries[J]. Environmental Health Perspectives, 2014, 122(5): 439-446. doi: 10.1289/ehp.1206154
|
[14] |
DAVID R. Aviation: Diver for economic & social development [C]//Second meeting of the ICAO Asia/Pacific seamless ATM planning group (APSAPG/2). Tokyo: International Civil Aviation Organization, 2012.
|
[15] |
LI X, YU X, ZHAI W. Additively manufactured deformation-recoverable and broadband sound-absorbing microlattice inspired by the concept of traditional perforated panels[J]. Advanced Materials, 2021, 33(44): 2104552.
|
[16] |
REN Z, CHENG Y, CHEN M, et al. A compact multifunctional metastructure for Low-frequency broadband sound absorption and crash energy dissipation[J]. Materials & Design, 2022, 215: 110462.
|
[17] |
LIU Q, LIU X, ZHANG C, et al. A novel multiscale porous composite structure for sound absorption enhancement[J]. Composite Structures, 2021, 276: 114456. doi: 10.1016/j.compstruct.2021.114456
|
[18] |
马大猷. 噪声控制学[M]. 北京:科学出版社, 1987: 288-296.
MA Dayou. Noise control[M]. Beijing: Science Press, 1987: 288-296(in Chinese).
|
[19] |
TOYODA M, SAKAGAMI K, TAKAHASHI D, et al. Effect of a honeycomb on the sound absorption characteristics of panel-type absorbers[J]. Applied Acoustics, 2011, 72(12): 943-948. doi: 10.1016/j.apacoust.2011.05.017
|
[20] |
HOSHI K, HANYU T, OKUZONO T, et al. Implementation experiment of a honeycomb-backed MPP sound absorber in a meeting room[J]. Applied Acoustics, 2020, 157: 107000. doi: 10.1016/j.apacoust.2019.107000
|
[21] |
YAN S, WU J, CHEN J, et al. Optimization design and analysis of honeycomb micro-perforated plate broadband sound absorber[J]. Applied Acoustics, 2022, 186: 108487. doi: 10.1016/j.apacoust.2021.108487
|
[22] |
GAUTAM A, CELIK A, AZARPEYVAND M. On the acoustic performance of double degree of freedom helmholtz resonator based acoustic liners[J]. Applied Acoustics, 2022, 191: 108661.
|
[23] |
ZHONG H, TIAN Y, GAO N, et al. Ultra-thin composite underwater honeycomb-type acoustic metamaterial with broadband sound insulation and high hydrostatic pressure resistance[J]. Composite Structures, 2021, 277: 114603. doi: 10.1016/j.compstruct.2021.114603
|
[24] |
SHEN L, ZHANG H, LEI Y, et al. Hierarchical pore structure based on cellulose nanofiber/melamine composite foam with enhanced sound absorption performance[J]. Carbohydrate Polymers, 2021, 255: 117405. doi: 10.1016/j.carbpol.2020.117405
|
[25] |
王元元. 波音-NASA新型短舱声衬设计超出预期[N]. 中国航空报, 2018-09-18(5).
WANG Yuanyuan. Boeing-NASA's new nacelle acoustic liner design exceeds expectations[N]. Chinese Aviation News, 2018-09-18(5)(in Chinese).
|
[26] |
HU D, LIU X, LIU W, et al. The effects of compaction and interleaving on through-thickness electrical resistance and in-plane mechanical properties for CFRP laminates[J]. Composites Science and Technology, 2022, 223: 109441. doi: 10.1016/j.compscitech.2022.109441
|
[27] |
YI X S, GUO M C, LIU G, et al. Composite conductive sheet, fabricating method and application thereof: EP Patant, EP2687364B1[P]. 2017-04-05.
|
[28] |
GUO M, YI X, LIU G, et al. Simultaneously increasing the electrical conductivity and fracture toughness of carbon–fiber composites by using silver nanowires-loaded interleaves[J]. Composites Science and Technology, 2014, 97: 27-33. doi: 10.1016/j.compscitech.2014.03.020
|
[29] |
LIN Y. Functionalized interleaf technology in carbon-fibre-reinforced composites for aircraft applications[J]. National Science Review, 2014, 1(1): 7.
|
[30] |
LIU H, GUO Y, ZHOU Y, et al. Multifunctional nickel-coated carbon fiber veil for improving both fracture toughness and electrical performance of carbon fiber/epoxy composite laminates[J]. Polymer Composites, 2021, 42(10): 5335-5347. doi: 10.1002/pc.26227
|
[31] |
XU F, YANG B, FENG L, et al. Improved interlaminar fracture toughness and electrical conductivity of CFRPs with non-woven carbon tissue interleaves composed of fibers with different lengths[J]. Polymers, 2020, 12(4): 803. doi: 10.3390/polym12040803
|
[32] |
LI W, XIANG D, WANG L, et al. Simultaneous enhancement of electrical conductivity and interlaminar fracture toughness of carbon fiber/epoxy composites using plasma-treated conductive thermoplastic film interleaves[J]. RSC advances, 2018, 8(47): 26910-26921. doi: 10.1039/C8RA05366A
|
[33] |
GUO M, YI X. The production of tough, electrically conductive carbon fiber composite laminates for use in airframes[J]. Carbon, 2013, 58: 241-244.
|
[34] |
GUO M, YI X. Effect of paper or silver nanowires-loaded paper interleaves on the electrical conductivity and interlaminar fracture toughness of composites[J]. Aerospace, 2018, 5(3): 77.
|
[35] |
JIANG M, CONG X, YI X, et al. A stochastic overlap network model of electrical properties for conductive weft yarn composites and their experimental study[J]. Composites Science and Technology, 2022, 217: 109075. doi: 10.1016/j.compscitech.2021.109075
|
[36] |
JIANG M, HU Y, RUDD C, et al. Simultaneously improving electrical properties and interlaminar fracture toughness: A novel multifunctional composite based on Inter-Woven Wire Fabric[J]. Composites Communications, 2023, 39: 101563. doi: 10.1016/j.coco.2023.101563
|
[37] |
YI X S, XIAO Y M, RUDD C, et al. Thickness direction conductive laminated composite material and manufacturing method therefor: CN Patant, WO2019227474A1[P]. 2019-12-05.
|
[38] |
WANG F, CHEN Z, WU C, et al. Prediction on sound insulation properties of ultrafine glass wool mats with artificial neural networks[J]. Applied Acoustics, 2019, 146: 164-171. doi: 10.1016/j.apacoust.2018.11.018
|
[39] |
MISKINIS K, DIKAVICIUS V, BUSKA A, et al. Influence of EPS, mineral wool and plaster layers on sound and thermal insulation of a wall: a case study[J]. Applied Acoustics, 2018, 137: 62-68. doi: 10.1016/j.apacoust.2018.03.001
|
[40] |
MOHAMMADI B, ERSHAD-LANGROUDI A, MORADI G, et al. Mechanical and sound absorption properties of open-cell polyurethane foams modified with rock wool fiber[J]. Journal of Building Engineering, 2022, 48: 103872. doi: 10.1016/j.jobe.2021.103872
|
[41] |
MA D Y. Theory and design of microperforated panel sound-absorbing constructions[J]. Scientia Sinica, 1975, 18(1): 55-71.
|
[42] |
Wikipedia. Acoustic liner[EB/OL]. [2022-11-12]. https://en.wikipedia.org/wiki/Acoustic_liner.
|
[43] |
TABAN E, KHAVANIN A, JAFARI A J, et al. Experimental and mathematical survey of sound absorption performance of date palm fibers[J]. Heliyon, 2019, 5(6): e01977. doi: 10.1016/j.heliyon.2019.e01977
|
[44] |
BHINGARE N H, PRAKASH S. An experimental and theoretical investigation of coconut coir material for sound absorption characteristics[J]. Materials Today: Proceedings, 2021, 43: 1545-1551.
|
[45] |
PRABHAKARAN S, KRISHNARAJ V, KUMAR M S, et al. Sound and vibration damping properties of flax fiber reinforced composites[J]. Procedia Engineering, 2014, 97: 573-581. doi: 10.1016/j.proeng.2014.12.285
|
[46] |
TENG T, ELAMMARAN J, BAKRI M K B, et al. Effect of biomass ash mixture composite on sound absorption[J]. Materials Today: Proceedings, 2020, 29: 223-227. doi: 10.1016/j.matpr.2020.05.533
|
[47] |
BAEK S H, KIM J H. Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves[J]. Composites Science and Technology, 2020, 198: 108325. doi: 10.1016/j.compscitech.2020.108325
|
[48] |
KANG C-W, KOLYA H, JANG E-S, et al. Steam exploded wood cell walls reveals improved gas permeability and sound absorption capability[J]. Applied Acoustics, 2021, 179: 108049. doi: 10.1016/j.apacoust.2021.108049
|
[49] |
LIU R, HOU L, ZHOU W, et al. Design, fabrication and sound absorption performance investigation of porous copper fiber sintered sheets with rough surface[J]. Applied Acoustics, 2020, 170: 107525. doi: 10.1016/j.apacoust.2020.107525
|
[50] |
HIROSAWA K. Numerical study on the influence of fiber cross-sectional shapes on the sound absorption efficiency of fibrous porous materials[J]. Applied Acoustics, 2020, 164: 107222. doi: 10.1016/j.apacoust.2020.107222
|
[51] |
ATIÉNZAR-NAVARRO R, BONET-ARACIL M, GISBERT-PAYÁ J, et al. Sound absorption of textile fabrics doped with microcapsules[J]. Applied Acoustics, 2020, 164: 107285. doi: 10.1016/j.apacoust.2020.107285
|
[52] |
CAO L, YU X, YIN X, et al. Hierarchically maze-like structured nanofiber aerogels for effective low-frequency sound absorption[J]. Journal of Colloid and Interface Science, 2021, 597: 21-28. doi: 10.1016/j.jcis.2021.03.172
|
[53] |
CHEN S H, WANG J K, ZUO W Q, et al. Superhydrophobic cement with hierarchically tunable pore structure by additive manufacturing towards super sound absorption[J]. Journal of Building Engineering, 2024, 96: 110433. doi: 10.1016/j.jobe.2024.110433
|
[54] |
CAI X, ZHANG Y, YANG J. Tunable ultra low and broad acoustic absorption by controllable pyrolysis of fiber materials[J]. Materials Today Communications, 2018, 16: 226-231.
|
[55] |
ZHANG H, LIU H, WU H, et al. Microwave absorbing property of gelcasting SiC-Si3N4 ceramics with hierarchical pore structures[J]. Journal of the European Ceramic Society, 2022, 42(4): 1249-1257. doi: 10.1016/j.jeurceramsoc.2021.12.011
|
[56] |
ZHOU P, ZHANG J, SONG Z, et al. Ordered mesoporous carbon with hierarchical pore structure for high-efficiency electromagnetic wave absorber under thin matching thickness[J]. Journal of Materials Research and Technology, 2023, 25: 1560-1569. doi: 10.1016/j.jmrt.2023.06.056
|
[57] |
YANG L, CHUA J W, LI X, et al. Superior broadband sound absorption in hierarchical ultralight graphene oxide aerogels achieved through emulsion freeze-casting[J]. Chemical Engineering Journal, 2023, 469: 143896. doi: 10.1016/j.cej.2023.143896
|
[58] |
OH J-H, LEE H R, UMRAO S, et al. Self-aligned and hierarchically porous graphene-polyurethane foams for acoustic wave absorption[J]. Carbon, 2019, 147: 510-518. doi: 10.1016/j.carbon.2019.03.025
|
[59] |
XU P, FANG J, HE H, et al. In situ growth of globular MnO2 nanoflowers inside hierarchical porous mangosteen shells-derived carbon for efficient electromagnetic wave absorber[J]. Journal of Alloys and Compounds, 2022, 903: 163826. doi: 10.1016/j.jallcom.2022.163826
|
[60] |
DONG C, LIU Z, PIERCE R, et al. Sound absorption performance of a micro perforated sandwich panel with honeycomb-hierarchical pore structure core[J]. Applied Acoustics, 2023, 203: 109200. doi: 10.1016/j.apacoust.2022.109200
|
[61] |
OLNY X, BOUTIN C. Acoustic wave propagation in double porosity media[J]. The Journal of the Acoustical Society of America, 2003, 114: 73-89.
|
[62] |
MOUSANEZHAD D, KAMRAVA S, VAZIRI A. Origami-based building blocks for modular construction of foldable structures[J]. Scientific Reports, 2017, 7(1): 14792.
|
[63] |
MA Q, REJAB R, SIREGAR J, et al. A review of the recent trends on core structures and impact response of sandwich panels[J]. Journal of Composite Materials, 2021, 55(18): 2513-2555. doi: 10.1177/0021998321990734
|
[64] |
DU Y, SONG C, XIONG J, et al. Fabrication and mechanical behaviors of carbon fiber reinforced composite foldcore based on curved-crease origami[J]. Composites Science and Technology, 2019, 174: 94-105. doi: 10.1016/j.compscitech.2019.02.019
|
[65] |
JIN X, FANG H, YU X, et al. Reconfigurable origami-inspired window for tunable noise reduction and air ventilation[J]. Building and Environment, 2023, 227: 109802. doi: 10.1016/j.buildenv.2022.109802
|
[66] |
JI J C, LUO Q, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing, 2021, 161: 107945.
|
[67] |
HAN H, SOROKIN V, TANG L, et al. Origami-based tunable mechanical memory metamaterial for vibration attenuation[J]. Mechanical Systems and Signal Processing, 2023, 188: 110033. doi: 10.1016/j.ymssp.2022.110033
|
[68] |
JIANG T, HAN Q, LI C. Topologically tunable local-resonant origami metamaterials for wave transmission and impact mitigation[J]. Journal of Sound and Vibration, 2023, 548: 117548.
|
[69] |
PRATAPA P P, SURYANARAYANA P, PAULINO G H. Bloch wave framework for structures with nonlocal interactions: Application to the design of origami acoustic metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2018, 118: 115-132.
|
[70] |
WAN M, YU K, GU J, et al. 4D printed TMP origami metamaterials with programmable mechanical properties[J]. International Journal of Mechanical Sciences, 2023, 250: 108275. doi: 10.1016/j.ijmecsci.2023.108275
|
[71] |
LI H, ZHANG N, FAN X, et al. Investigation of effective factors of woven structure fabrics for acoustic absorption[J]. Applied Acoustics, 2020, 161: 107081. doi: 10.1016/j.apacoust.2019.107081
|
[72] |
DONG C, LIU Z, LIU X, et al. Sound absorption performance of folded structures prepared from woven prepreg and porous material composites[J]. Applied Acoustics, 2023, 212: 109591. doi: 10.1016/j.apacoust.2023.109591
|
[73] |
RUIZ H, COBO P, JACOBSEN F. Optimization of multiple-layer microperforated panels by simulated annealing[J]. Applied Acoustics, 2011, 72(10): 772-776.
|