Volume 40 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
XIANG Yulong, GUO Jing, GUAN Fucheng, et al. Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004
Citation: XIANG Yulong, GUO Jing, GUAN Fucheng, et al. Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption[J]. Acta Materiae Compositae Sinica, 2023, 40(1): 212-218. doi: 10.13801/j.cnki.fhclxb.20220225.004

Preparation and properties of regenerated polyester hollow fiber wikis for sound absorption

doi: 10.13801/j.cnki.fhclxb.20220225.004
Funds:  National Natural Science Foundation of China (51773024; 51373027); Liaoning Innovation Team Fund (LT2017017); Liaoning Provincial Natural Science Foundation (20180550429); China Chemical Fiber Industry Association • Green Yu Fund (CCFA-LVYU-2019-02)
  • Received Date: 2021-12-09
  • Accepted Date: 2022-01-27
  • Rev Recd Date: 2022-01-14
  • Available Online: 2022-02-28
  • Publish Date: 2023-01-15
  • With the aggravation of environmental pollution, the development and application of recycled polyester fibers based on bottle chip is of great significance. In this paper, recycled polyester hollow fibers and skin core type heat-bonded fibers were used as raw materials to prepare sound absorbing materials with multi-scale micropores by hot air consolidation. The structure and properties of polyester hollow fibers were characterized. Standing wave tube method was used to study the relationship between linear density and sound absorbing effect of hollow fibers, and a "multistage" sound absorbing theory was proposed. The results show that the hollow fibers with the linear density of 10 D has the largest hollowness, the best toughness and the best sound absorption effect. The sound absorption coefficient and noise reduction coefficient increase linearly with the increase of thickness. When the thickness is 2 cm, the noise reduction coefficient (NRC) is greater than 0.5, which is expected to become an ideal sound absorption material.

     

  • loading
  • [1]
    VOSS S, SCHNEIDER A, HUTH C, et al. Long-term exposure to air pollution, road traffic noise, residential greenness, and prevalent and incident metabolic syndrome: Results from the population-based KORA F4/FF4 cohort in Augsburg, Germany[J]. Environment International,2021,147:106364. doi: 10.1016/j.envint.2020.106364
    [2]
    王笑笛. 玻璃纤维增强水泥基复合材料力学及吸声性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    WANG Xiaodi. Study on mechanical properties and sound absorption properties of glass fiber reinforced cement-based composites[D]. Harbin: Harbin Engineering University, 2018(in Chinese).
    [3]
    LEWIS R C, GERSHON R R, NEITZEL R L. Estimation of permanent noise-induced hearing loss in an urban setting[J]. Environmental Science & Technology,2013,47(12):6393-6399.
    [4]
    CHEN Y, YUAN F, SU Q, et al. A novel sound absorbing material comprising discarded luffa scraps and polyester fibers[J]. Journal of Cleaner Production,2020,245:118917. doi: 10.1016/j.jclepro.2019.118917
    [5]
    SHANG L, ZHAI J, ZHAO G. Stochastic dynamic analysis of acoustic-structural coupled systems under non-stationary random excitations[J]. Journal of Fluids and Structures,2019,91:102742. doi: 10.1016/j.jfluidstructs.2019.102742
    [6]
    YAO Z, CAI J, WANG X, et al. Application of equivalent diameter in sound absorption performance prediction of non-circular sectional polyester fibers[J]. Applied Acoustics,2021,182:108238. doi: 10.1016/j.apacoust.2021.108238
    [7]
    LIU X T, JIANG J J,TANG X N, et al. Sound absorption of hollow polyester woven fabric with honeycomb weave[J]. Applied Acoustics,2021,180:108148. doi: 10.1016/j.apacoust.2021.108148
    [8]
    伍发元, 代小敏, 方铭, 等. 纤维截面形状对聚酯纤维材料吸声性能的影响研究[J]. 声学技术, 2020, 39(05):618-621.

    WU Fayuan, DAI Xiaomin, FANG Ming, et al. Research on the influence of polyester fiber cross-section shape on sound absorption performance of polyester fiber materials[J]. Technical Acoustics,2020,39(05):618-621(in Chinese).
    [9]
    SAKTHIVEL S, MELESE B, EDAE A, et al. Garment waste recycled cotton/polyester thermal and acoustic properties of air-laid nonwovens[J]. Advances in Materials Science and Engineering,2020,2020:8304525. doi: 10.1155/2020/8304525
    [10]
    PENG L, SONG B, WANG J, et al. Mechanic and acoustic properties of the sound-absorbing material made from natural fiber and polyester[J]. Advances in Materials Science and Engineering,2015,2015:274913. doi: 10.1155/2015/274913
    [11]
    SARI N H, FAJRIN J. Acoustic properties of sound absorber from modified polyester with filler sodium bicarbonate[J]. Oriental Journal of Chemistry,2018,34(4):2187-2191. doi: 10.13005/ojc/3404061
    [12]
    YOON J W, JANG K S, CHO Y T. A study on the acoustic characteristics and absorption performance improvement method of double layered sound absorption system using high density polyester absorbing materials[J]. Transactions of the Korean Society for Noise and Vibration Engineering,2016,26(3):331-339. doi: 10.5050/KSNVE.2016.26.3.331
    [13]
    王 灿, 朱 灿, 姚智敏, 等. 铝纤维/聚酯纤维复合结构的低频吸声性能研究[J]. 声学与振动, 2021, 9(1):30-35. doi: 10.12677/OJAV.2021.91004

    WANG Can, ZHU Can, YAO Zhimin , et al. Study on low frequency sound absorption performance of aluminum fiber/polyester fiber composites[J]. Open Journal of Acoustics and Vibration,2021,9(1):30-35(in Chinese). doi: 10.12677/OJAV.2021.91004
    [14]
    吴量, 刘淼, 刘学文, 等. 多层多孔吸声材料结构参数优化设计[J]. 应用声学, 2021, 40(3):449-456.

    WU Liang, LIU Miao, LIU Xuewen, et al. Optimal design of structural parameters of multi-layer porous sound-absorbing materials[J]. Journal of Applied Acoustics,2021,40(3):449-456(in Chinese).
    [15]
    LEE T, CHEONG Y, BAAC H W, et al. Origin of Gouy phase shift identified by laser-generated focused ultrasound[J]. ACS Photonics,2020,7(11):3236-3245. doi: 10.1021/acsphotonics.0c01313
    [16]
    中国国家标准化管理委员会. 非织造布试验方法: GB/T 24218.2—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People’s Republic of China. Test methods for nonwovens: GB/T 24218.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [17]
    中国国家标准化管理委员会. 阻抗管吸声系数和声阻抗的测量: GB/T 18696.1—2004 [S]. 北京: 中国标准出版社, 2004.

    Standardization Administration of the People’s Republic of China. Determination of sound absorption coefficient and impedance in impedance tubes: GB/T 24218.2—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [18]
    BERTOCCHI M J, VANG P, BALOW R B, et al. Enhanced mechanical damping in electrospun polymer fibers with liquid cores: Applications to sound damping[J]. ACS Applied Polymer Materials,2019,1(8):2068-2076. doi: 10.1021/acsapm.9b00352
    [19]
    CAO L, SI Y, YIN X, et al. Ultralight and resilient electrospun fiber sponge with a lamellar corrugated microstructure for effective low-frequency sound absorption[J]. ACS Applied Materials & Interfaces,2019,11(38):35333-35342.
    [20]
    XIA B, YU D, LIU J. Interval and subinterval perturbation methods for a structural-acoustic system with interval parameters[J]. Journal of Fluids and Structures,2013,38:146-163. doi: 10.1016/j.jfluidstructs.2012.12.003
    [21]
    周文璐, 林萍, 徐晓美, 等. 黄麻纤维毡吸声特性及其在汽车上的应用[J]. 林业工程学报, 2021, 6(03):113-119.

    ZHOU Luwen, LIN Ping, XU Xiaomei, et al. Sound absorption characteristics of the jute fiber felt and its application in automobiles[J]. Journal of Forestry Engineering,2021,6(03):113-119(in Chinese).
    [22]
    BINBIN D, FEIHONG W, HAMIDREZA A, et al. Simple fabrication of concrete with remarkable self-cleaning ability, robust superhydrophobicity, tailored porosity, and highly thermal and sound insulation[J]. ACS Applied Materials & Interfaces,2019,11(45):42801-42807.
    [23]
    敖庆波, 王建忠, 李烨, 等. 低频吸声材料的研究进展[J]. 功能材料, 2020, 51(12):12045-12050. doi: 10.3969/j.issn.1001-9731.2020.12.007

    AO Qingbo, WANG Jianzhong, LI Ye, et al. Development of lower frequency sound absorption materials[J]. Journal of Functional Materials,2020,51(12):12045-12050(in Chinese). doi: 10.3969/j.issn.1001-9731.2020.12.007
    [24]
    OH J H, KIM J, LEE H, et al. Directionally antagonistic graphene oxide-polyurethane hybrid aerogel as a sound absorber[J]. ACS Applied Materials & Interfaces,2018,10(26):22650-22660.
    [25]
    HE C, HUANG J, LI S, et al. Mechanically resistant and sustainable cellulose-based composite aerogels with excellent flame retardant, sound-absorption, and superantiwetting ability for advanced engineering materials[J]. ACS Sustainable Chemistry & Engineering,2018,6(1):927-936.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(2)

    Article Metrics

    Article views (746) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return