Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
KONG Weifan, FU Tao. Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2157-2166. doi: 10.13801/j.cnki.fhclxb.20231024.003
Citation: KONG Weifan, FU Tao. Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 2157-2166. doi: 10.13801/j.cnki.fhclxb.20231024.003

Sound absorption performance of concave hexagonal honeycomb sandwich panelswith negative Poisson's ratio

doi: 10.13801/j.cnki.fhclxb.20231024.003
Funds:  National Natural Science Foundation of China (52205105); Yunnan Fundamental Research Projects (202101AU070160; 202201AT070145)
  • Received Date: 2023-09-15
  • Accepted Date: 2023-10-19
  • Rev Recd Date: 2023-10-14
  • Available Online: 2023-10-25
  • Publish Date: 2024-04-15
  • In order to improve the sound absorption characteristics of the traditional honeycomb sandwich panel structure, a negative Poisson's ratio concave hexagonal honeycomb sandwich panel structure was proposed, the upper panel of the structure was a micro-perforated plate, and the sandwich layer was a negative Poisson's ratio concave hexagonal honeycomb, which was composed of 19 units cavity resonators with internal extension tubes. The sound absorption coefficient of the concave hexagonal honeycomb sandwich plate structure in the frequency range of 500-950 Hz was calculated by COMSOL simulation software, and the validity of the simulation results was verified by the B&K standing wave tube measurement system. Under the premise of keeping the structure of negative Poisson's ratio concave hexagonal honeycomb cell unchanged, the influence of cell parameters on the sound absorption coefficient of honeycomb sandwich plate structure was studied. The results show that when the cell inclination angle increases, the porosity of the inner extension tube decreases, and the wall thickness of the cavity decreases, the sound absorption performance of the structure is enhanced. In addition, the increase of cavity depth and the increase of inner extension tube length will lead to the resonance frequency moving to lower frequencies, and the change of cavity depth is more obvious. In the frequency range of 500-950 Hz, the average sound absorption coefficient of the structure is increased by 5.64% compared with the traditional honeycomb sandwich panel structure, indicating that the negative Poisson's ratio has better sound absorption performance in the low frequency range than the traditional honeycomb sandwich panel structure.

     

  • loading
  • [1]
    潘晋, 李娜, 方涵, 等. 桥梁防船撞夹层板结构形式耐撞性比较研究[J]. 武汉理工大学学报(交通科学与工程版), 2019, 43(6): 1027-1032.

    PAN Jin, LI Na, FANG Han, et al. Comparative study on the crashworthiness of bridge anti-ship collision sandwich plate structure[J]. Journal of Wuhan University of Technology (Traffic Science and Engineering), 2019, 43(6): 1027-1032(in Chinese).
    [2]
    BIRMAN V, KARDOMATEAS G A. Review of current trends in research and applications of sandwich structures[J]. Composites Part B: Engineering, 2018, 142: 221-240.
    [3]
    董福祥, 李丽君, 张宪旭, 等. 对多孔材料夹层板的隔声性能进行试验及仿真分析[J]. 科学技术与工程, 2020, 20(12): 4660-4664. doi: 10.3969/j.issn.1671-1815.2020.12.007

    DONG Fuxiang, LI Lijun, ZHANG Xianxu, et al. Experimental and simulation analysis of sound insulation performance of porous sandwich panel[J]. Science Technology and Engineering, 2020, 20(12): 4660-4664(in Chinese). doi: 10.3969/j.issn.1671-1815.2020.12.007
    [4]
    李维鑫. 微穿孔板低穿孔率条件下的吸声特性研究[D]. 镇江: 江苏大学, 2021.

    LI Weixin. Study on sound absorption characteristics of microperforated plate under low perforation rate[D]. Zhenjiang: Jiangsu University, 2021(in Chinese).
    [5]
    魏斌, 张冠军, 陈足君, 等. 多孔夹芯层组合方式对夹层板隔声特性影响研究[J]. 噪声与振动控制, 2021, 41(3): 228-233. doi: 10.3969/j.issn.1006-1355.2021.03.039

    WEI Bin, ZHANG Guanjun, CHEN Zujun, et al. Study on the influence of porous sandwich layer combination on sound insulation characteristics of sandwich panel[J]. Noise and Vibration Control, 2021, 41(3): 228-233(in Chinese). doi: 10.3969/j.issn.1006-1355.2021.03.039
    [6]
    吴孝巡. 颗粒增强蜂窝轻质夹层板隔声特性研究[D]. 武汉: 华中科技大学, 2022.

    WU Xiaoxun. Study on sound insulation characteristics of particle reinforced honeycomb lightweight sandwich panel[D]. Wuhan: Huazhong University of Science and Technology, 2022(in Chinese).
    [7]
    高玉魁. 负泊松比超材料和结构[J]. 材料工程, 2021, 49(5): 38-47.

    GAO Yukui. Negative Poisson's ratio metamaterials and structures[J]. Materials Engineering, 2021, 49(5): 38-47(in Chinese).
    [8]
    杨德庆, 吴秉鸿, 张相闻. 星型负泊松比超材料防护结构抗爆抗冲击性能研究[J]. 爆炸与冲击, 2019, 39(6): 124-135.

    YANG Deqing, WU Binghong, ZHANG Xiangwen. Study on anti-explosion and impact resistance of star negative Poisson's ratio metamaterial protective structure[J]. Explosion and Shock, 2019, 39(6): 124-135(in Chinese).
    [9]
    马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能[J]. 振动与冲击, 2019, 38(17): 81-87. doi: 10.13465/j.cnki.jvs.2019.17.011

    MA Fangwu, LIANG Hongyu, ZHAO Ying, et al. Dynamic properties of in-plane impact of concave triangular negative Poisson's ratio material[J]. Journal of Vibration and Shock, 2019, 38(17): 81-87(in Chinese). doi: 10.13465/j.cnki.jvs.2019.17.011
    [10]
    GAI X L, GUAN X W, CAI Z N, et al. Acoustic properties of honeycomb like sandwich acoustic metamaterials[J]. Applied Acoustics, 2022, 199: 109016. doi: 10.1016/j.apacoust.2022.109016
    [11]
    赵心悦, 孙献娥, 杨小军, 等. 蜂窝与微穿孔声学结构研究进展及其在木结构建筑中的应用[J]. 林产工业, 2021, 58(2): 31-35. doi: 10.19531/j.issn1001-5299.202102007

    ZHAO Xinyue, SUN Xian'e, YANG Xiaojun, et al. Research progress of honeycomb and micro-perforated acoustic structure and its application in wood structure building[J]. Forest Products Industry, 2021, 58(2): 31-35(in Chinese). doi: 10.19531/j.issn1001-5299.202102007
    [12]
    吴佳康, 柳政卿, 王秋成. 复合微穿孔板吸声结构声学性能预测[J]. 噪声与振动控制, 2022, 42(3): 203-208. doi: 10.3969/j.issn.1006-1355.2022.03.036

    WU Jiakang, LIU Zhengqing, WANG Qiucheng. Acoustic performance prediction of sound-absorbing structure of composite microperforated plate[J]. Noise and Vibration Control, 2022, 42(3): 203-208(in Chinese). doi: 10.3969/j.issn.1006-1355.2022.03.036
    [13]
    徐稳, 王知杰, 朱雯雯, 等. 微穿孔板-聚合物层状结构材料的制备和吸声性能[J]. 材料研究学报, 2021, 35(7): 535-542.

    XU Wen, WANG Zhijie, ZHU Wenwen, et al. Preparation and sound absorption performance of microperforated plate-polymer layered structural materials[J]. Chinese Journal of Materials Research, 2021, 35(7): 535-542(in Chinese).
    [14]
    张丰辉, 唐宇帆, 辛锋先, 等. 微穿孔蜂窝-波纹复合声学超材料吸声行为[J]. 物理学报, 2018, 67(23): 120-130. doi: 10.7498/aps.67.20181368

    ZHANG Fenghui, TANG Yufan, XIN Fengxian, et al. Sound absorption behavior of microperforated honeycomb-corrugated composite acoustic metamaterials[J]. Acta Physica Sinica, 2018, 67(23): 120-130(in Chinese). doi: 10.7498/aps.67.20181368
    [15]
    刘志恩, 袁金呈, 陈弯, 等. 复合微穿孔板吸声结构吸声特性分析及优化[J]. 声学技术, 2021, 40(4): 515-520. doi: 10.16300/j.cnki.1000-3630.2021.04.012

    LIU Zhi'en, YUAN Jincheng, CHEN Wan, et al. Analysis and optimization of sound absorption characteristics of composite microperforated plate sound-absorbing structure[J]. Acoustic Technology, 2021, 40(4): 515-520(in Chinese). doi: 10.16300/j.cnki.1000-3630.2021.04.012
    [16]
    LIU X, WANG C Q, ZANG Y M, et al. Investigation of broadband sound absorption of smart micro-perforated panel (MPP) absorber[J]. International Journal of Mechanical Sciences, 2021, 199: 106426. doi: 10.1016/j.ijmecsci.2021.106426
    [17]
    RAFIQUE F, WU J H, LIU C R, et al. Low-frequency sound absorption of an inhomogeneous micro-perforated panel with J-shaped cavities of different depths[J]. Acoustics Australia, 2022, 50(2): 203-214. doi: 10.1007/s40857-021-00261-2
    [18]
    JIANG Y F, CHENG S, HAN M, et al. Design and optimization of micro-perforated ultralight sandwich structure with N-type hybrid core for broadband sound absorption[J]. Applied Acoustics, 2023, 202: 109184. doi: 10.1016/j.apacoust.2022.109184
    [19]
    ZHANG Q L. Sound transmission through micro-perforated double-walled cylindrical shells lined with porous material[J]. Journal of Sound and Vibration, 2020, 485: 115539. doi: 10.1016/j.jsv.2020.115539
    [20]
    WANG D W, WEN Z H, CHRIST G, et al. Sound absorption of face-centered cubic sandwich structure with micro-perforations[J]. Materials & Design, 2020, 186: 108344.
    [21]
    胡齐笑, 丁善婷, 刘荻. 改进型传递矩阵法的多穿孔率复合微穿孔板吸声性能研究[J]. 机械科学与技术, 2020, 39(11): 1774-1781. doi: 10.13433/j.cnki.1003-8728.20200271

    HU Qixiao, DING Shanting, LIU Di. Study on sound absorption performance of multi-perforation rate composite micro-perforation plate by improved transfer matrix method[J]. Mechanical Science and Technology, 2020, 39(11): 1774-1781(in Chinese). doi: 10.13433/j.cnki.1003-8728.20200271
    [22]
    王卫辰, 邢邦圣, 顾海霞, 等. 微穿孔板几何参数估算及其对吸声性能的影响[J]. 声学学报, 2019, 44(3): 369-375. doi: 10.15949/j.cnki.0371-0025.2019.03.012

    WANG Weichen, XING Bangsheng, GU Haixia, et al. Estimation of geometric parameters of micro-perforated plate and its influence on sound absorption performance[J]. Acta Acoustica Sinica, 2019, 44(3): 369-375(in Chinese). doi: 10.15949/j.cnki.0371-0025.2019.03.012
    [23]
    沈佳熔, 吴懋亮, 王齐盛, 等. 材料负泊松比结构研究综述[J]. 机械制造, 2023, 61(8): 47-56. doi: 10.3969/j.issn.1000-4998.2023.08.013

    SHEN Jiarong, WU Maoliang, WANG Qisheng, et al. Review of negative Poisson's ratio structure of materials[J]. Machinery Manufacturing, 2023, 61(8): 47-56(in Chinese). doi: 10.3969/j.issn.1000-4998.2023.08.013
    [24]
    王义平, 李凤莲, 吕梅. 波纹-负泊松比蜂窝混合芯夹层板的自由振动[J]. 科学技术与工程, 2023, 23(14): 5963-5969. doi: 10.12404/j.issn.1671-1815.2023.23.14.05963

    WANG Yiping, LI Fenglian, LYU Mei. Free vibration of corrugated-negative Poisson's-ratio honeycomb hybrid sandwich panel[J]. Science Technology and Engineering, 2023, 23(14): 5963-5969(in Chinese). doi: 10.12404/j.issn.1671-1815.2023.23.14.05963
    [25]
    QIN D C, LI M C, WANG T T, et al. Design and mechanical properties of negative Poisson's ratio structure-based topology optimization[J]. Applied Sciences, 2023, 13(13): 7728. doi: 10.3390/app13137728
    [26]
    KUN Y, FEI T, BO W Y, et al. Study on impact energy absorption performance and optimization of negative Poisson's ratio structure[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2023, 45(6): 328. doi: 10.1007/s40430-023-04253-3
    [27]
    LIU S, WANG K F, WANG B L. Buckling and vibration characteristic of anisotropic sandwich plates with negative Poisson's ratio based on isogeometric analysis[J/OL]. Mechanics of Advanced Materials and Structures, 2023: 1-16[2022-03-25]. https://doi.org/10.1080/15376494.2023. 2222280. doi: 10.1080/15376494.2023.2222280
    [28]
    ZHANG Z J, ZHANG L, DONG Y Y. Mechanical properties of negative Poisson's ratio metamaterial units and honeycomb structures with cosine-like re-entrant structure[J]. Materials Letters, 2023, 331: 133451. doi: 10.1016/j.matlet.2022.133451
    [29]
    虞科炯, 徐峰祥, 华林. 正弦曲边负泊松比蜂窝结构面内冲击性能研究[J]. 振动与冲击, 2021, 40(13): 51-59. doi: 10.13465/j.cnki.jvs.2021.13.007

    YU Kejiong, XU Fengxiang, HUA Lin. Study on in-plane impact performance of sinusoidal curved side negative Poisson's ratio honeycomb structure[J]. Journal of Vibration and Shock, 2021, 40(13): 51-59(in Chinese). doi: 10.13465/j.cnki.jvs.2021.13.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (293) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return