Citation: | LIU Jie, ZHAO Xuesong, LI Qi, et al. Effect of polybutylene succinate on properties of polylactic acid-based wood-plastic composites[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2445-2454. DOI: 10.13801/j.cnki.fhclxb.20230831.002 |
In order to solve the problems of high preparation cost, poor toughness and heat resistance of polylactic acid (PLA) based wood-plastic composites, the biodegradable resin polybutylene succinate (PBS) with high flexibility and excellent heat resistance was selected as the modified resin. The environmentally friendly PBS-WF / PLA ternary degradable wood plastic composites were prepared by blending with Salix powder (WF) and polylactic acid (PLA). It gives full play to the performance compensation effect between the resin matrix, optimizes the performance and reduces the preparation cost.
Wood-plastic composites were prepared by compression molding. WF was modified by silane coupling agent KH550. PLA, PBS, stearic acid and modified WF were added to the two-roll mill with high and low roller temperatures of 180℃ and 170℃ in turn for uniform mixing. The mixed materials were cooled, chopped and paved into the mold cavity. After hot pressing and cold pressing, the sheet was obtained. The hot pressing temperature was 185℃, the pressure was 5 MPa, the time was 7 min, and the cold pressing pressure was 7 MPa, the time was 10 min. Finally, the mechanical properties, dynamic thermomechanical properties, heat resistance and thermal stability of PBS-WF/PLA composites were tested and analyzed, and the microstructure and interface bonding of the composites were observed by scanning electron microscopy.
From the analysis of mechanical and thermal properties, it can be seen that with the increase of PBS content in the resin system, the strength and rigidity of the composites decreased, and the static bending strength, elastic modulus, tensile strength, storage modulus and loss modulus decreased. However, the impact strength, Vicat softening temperature, thermal deformation temperature and the onset temperature of thermal decomposition in the second stage of thermogravimetric analysis increased, and the toughness, resistance to thermal deformation and thermal stability were improved. When the addition amount of PBS was 50 wt% of the total mass of the resin, the comprehensive properties of PBS-WF/PLA composites were relatively better. Compared with WF/PLA, the retention rates of static bending strength, elastic modulus and tensile strength of PBS-WF/PLA were 86.5%, 63.8% and 73.1%, respectively, and the impact strength increased by 40.1%. The vicat softening temperature, thermal deformation temperature and the initial temperature of the second stage of thermal decomposition of thermogravimetric analysis increased by 37.1℃, 53.7℃ and 4.1℃, respectively. The production cost is reduced by about 20 %. The microstructure analysis showed that when the amount of PBS was 30 wt%, it could be uniformly dispersed in the PLA matrix. The cross-section morphology of the composites was rough and the continuity was good. The interface of each component was well bonded, the phase separation phenomenon was not obvious, and the flexibility of the composites was improved. When the PBS content reached 50 wt%, the fracture surface of the composites appeared many holes and uneven, and the phase separation phenomenon appeared. The interfacial bonding ability became weak, which would lead to the decrease of mechanical properties.Conclusion: The prepared PBS-WF/PLA ternary degradable wood-plastic composites realized the performance compensation between PBS and PLA resin. The addition of PBS has a great influence on the mechanical and thermal properties of PBS-WF/PLA, and is closely related to the percentage content of PBS in the total mass of the resin. After the addition of PBS, the strength and modulus of PBS-WF/PLA composites decreased to varying degrees, but the toughness, heat resistance and thermal stability were significantly improved. Comprehensive analysis, when the addition amount of PBS is 50 wt%, the comprehensive performance of the composite material is relatively good and meets the requirements of conventional wood-based panels. At the same time, compared with WF/PLA composites, the preparation cost is reduced by about 20%. Dynamic thermomechanical properties and microstructure analysis show that PLA and PBS are thermodynamically incompatible systems. The addition of an appropriate amount (30 wt%) of PBS can achieve uniform dispersion in the PLA matrix, and the interface of each component is well bonded. When the content of PBS is too much (50 wt%), there are many holes and unevenness in the fracture surface of the composites, and the interfacial bonding ability becomes weak, which will lead to the decrease of mechanical properties.
[1] |
斯泽泽, 曹积微, 盛清泉, 等. 可生物降解木塑复合材料的国内外研究进展[J]. 安徽农业科学, 2016, 44(2):101-103. DOI: 10.3969/j.issn.0517-6611.2016.02.036
SI Zeze, CAO Jiwei, SHENG Qingquan, et al. Research progress of biodegradable wood-plastic composite at home and abroad[J]. Journal of Anhui Agricultural Science,2016,44(2):101-103(in Chinese). DOI: 10.3969/j.issn.0517-6611.2016.02.036
|
[2] |
RADOOR S, KARAYIL J, RANGAPPA S M, et al. A review on the extraction of pineapple, sisal and abaca fibers and their use as reinforcement in polymer matrix[J]. Express Polymer Letters,2020,14(4):309-335. DOI: 10.3144/expresspolymlett.2020.27
|
[3] |
邵琳颖, 郗悦玮, 翁云宣. 可降解聚乳酸复合材料研究进展[J]. 中国塑料, 2022, 36(6):155-164. DOI: 10.19491/j.issn.1001-9278.2022.06.024
SHAO Linying, XI Yuewei, WENG Yunxuan. Research progress in degradation characteristics of poly(lactic acid) composites[J]. China Plastics,2022,36(6):155-164(in Chinese). DOI: 10.19491/j.issn.1001-9278.2022.06.024
|
[4] |
董倩倩, 李凯夫, 蔡奇龙, 等. 3D打印用聚乳酸/松木粉/纳米二氧化硅木塑复合材料性能研究[J]. 塑料科技, 2019, 47(1):85-89.
DONG Qianqian, LI Kaifu, CAI Qilong, et al. Properties of PLA/PWF/nano-SiO2wood-plastic composites for 3D printing[J]. Plastics Science and Technology,2019,47(1):85-89(in Chinese).
|
[5] |
刘庆伦, 冯嫦. 环保型木塑材料成型工艺与影响因素分析[J]. 现代盐化工, 2022, 49(5):41-43. DOI: 10.19465/j.cnki.2095-9710.2022.05.013
LIU Qinglun, FENG Chang. Analysis on the molding technology and influencing factors of environmental friendly wood-plastic materials[J]. Modern Salt and Chemical Industry,2022,49(5):41-43(in Chinese). DOI: 10.19465/j.cnki.2095-9710.2022.05.013
|
[6] |
LI X R, YU J M, MENG L Y, et al. Study of PLA-based wood-plastic composites[J]. Journal of Physics: Conference Series,2023,2437(1):012029. DOI: 10.1088/1742-6596/2437/1/012029
|
[7] |
王妮. 麻秆粉/聚乳酸木塑复合材料的制备与性能研究[D]. 天津: 天津工业大学, 2019.
WANG Ni. Preparation and properties of hemp stalk powder/polylactic acid wood-plastic composites[D]. Tianjin: Tianjin University of Technology, 2019(in Chinese).
|
[8] |
王春红, 王利剑, 左恒峰, 等. 可生物降解聚乳酸的增韧改性及性能研究[J]. 汽车安全与节能学报, 2019, 10(4):511-517. DOI: 10.3969/j.issn.1674-8484.2019.04.013
WANG Chunhong, WANG Lijian, ZUO Hengfeng, et al. Study on toughening modification and properties of biodegradable polylactic acid[J]. Journal of Automotive Safety and Energy Saving,2019,10(4):511-517(in Chinese). DOI: 10.3969/j.issn.1674-8484.2019.04.013
|
[9] |
司丹鸽. 秸秆粉/聚乳酸木塑复合材料的制备及改性研究[D]. 西安: 陕西科技大学, 2018.
SI Dange. Study on preparation and modification of straw flour/poly(lactic acid) composite materials[D]. Xi'an: Shaanxi University of Science and Technology, 2018(in Chinese).
|
[10] |
高华朋. 可降解沙柳/PLA保温材料制备工艺及性能研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
GAO Huapeng. Study on the preparation technology and properties of degradable Salix/PLA thermal insulation composites[D]. Hohhot: Inner Mongolia Agricultural University, 2020(in Chinese).
|
[11] |
SABIROVA G A, SAFIN R R, GALYAVETDINOV N R, et al. Research of biodegradable wood completed composite materials based on polylactide[J]. Journal of Physics: Conference Series,2019,1399(4):044117. DOI: 10.1088/1742-6596/1399/4/044117
|
[12] |
刁晓倩, 翁云宣, 宋鑫宇, 等. 国内外生物降解塑料产业发展现状[J]. 中国塑料, 2020, 34(5):123-135. DOI: 10.19491/j.issn.1001-9278.2020.05.019
DIAO Xiaoqian, WENG Yunxuan, SONG Xinyu, et al. Current development situation of biodegradable plastic industry in China and abroad[J]. China Plastics,2020,34(5):123-135(in Chinese). DOI: 10.19491/j.issn.1001-9278.2020.05.019
|
[13] |
杜德焰, 钟培金, 杨艳, 等. 纤维/聚乳酸复合材料的研究进展[J]. 广州化学, 2019, 44(4):69-75. DOI: 10.16560/j.cnki.gzhx.20190402
DU Deyan, ZHONG Peijin, YANG Yan, et al. Progress of fiber reinforced polylactic acid composites[J]. Guangzhou Chemistry,2019,44(4):69-75(in Chinese). DOI: 10.16560/j.cnki.gzhx.20190402
|
[14] |
ZHAO X P, HU H, WANG X, et al. Super tough poly(lactic acid) blends: A comprehensive review[J]. RSC Advances,2020,10(22):13316-13368.
|
[15] |
王纲, 杨卓妮, 曾静, 等. 聚丁二酸丁二醇酯的改性研究及产业化现状[J]. 广东化工, 2021, 48(15):96-97, 119. DOI: 10.3969/j.issn.1007-1865.2021.15.036
WANG Gang, YANG Zhuoni, ZENG Jing, et al. Modification research and industrialization status of poly(butylene succinate)[J]. Guangdong Chemical Industry,2021,48(15):96-97, 119(in Chinese). DOI: 10.3969/j.issn.1007-1865.2021.15.036
|
[16] |
酒巧娜, 卢玉献. PBS对两种新型聚乳酸复合材料性能的影响[J]. 山东化工, 2018, 47(18):22-23, 26. DOI: 10.3969/j.issn.1008-021X.2018.18.009
JIU Qiaona, LU Yuxian. Effect of PBS on the properties of two new polylactic acid composites[J]. Shandong Chemical Industry,2018,47(18):22-23, 26(in Chinese). DOI: 10.3969/j.issn.1008-021X.2018.18.009
|
[17] |
许凤, JONES-GWYNN L L, 孙润仓. 速生灌木沙柳的纤维形态及解剖结构研究[J]. 林产化学与工业, 2006, 26(1):91-94. DOI: 10.3321/j.issn:0253-2417.2006.01.022
XU Feng, JONES-GWYNN L L, SUN Runcang. Fibre morphology and anatomical structure of sandlive willow (Salix psammophila)[J]. Chemistry and Industry of Forest Products,2006, 26(1):91-94(in Chinese). DOI: 10.3321/j.issn:0253-2417.2006.01.022
|
[18] |
中国国家标准化管理委员会. 人造板及饰面人造板理化性能试验方法: GB/T 17657—2013[S]. 北京: 中国标准出版社, 2013.
Standardization Administration of the People's Republic of China. Test method for physical and chemical properties of wood-based panels and decorative wood-based panels: GB/T 17657—2013[S]. Beijing: China Standard Press, 2013(in Chinese).
|
[19] |
中国国家标准化管理委员会. 塑料拉伸性能的测定 第4部分: 各向同性和正交各向异性纤维增强复合材料的试验条件: GB/T 1040. 4—2006[S]. 北京: 中国标准出版社, 2006.
Standardization Administration of the People's Republic of China. Determination of tensile properties of plastics. Part 4: Test conditions for isotropic and orthotropic fiber reinforced composites: GB/T 1040.4—2006[S]. Beijing: China Standard Press, 2006(in Chinese).
|
[20] |
中国国家标准化管理委员会. 塑料简支梁冲击性能的测定 第1部分: 非仪器化冲击试验: GB/T 1043. 1—2008[S]. 北京: 中国标准出版社, 2008.
Standardization Administration of the People's Republic of China. Determination of impact properties of plastic simply supported beams. Part 1: Non-instrumented impact test: GB/T 1043.1—2008[S]. Beijing: China Standard Press, 2008(in Chinese).
|
[21] |
国家质量技术监督局. 热塑性塑料维卡软化温度(VST)的测定: GB/T 1633—2000[S]. 北京: 中国标准出版社, 2000.
National Bureau of Quality and Technical Supervision. Determination of Vicat softening temperature (VST) of thermoplastics: GB/T 1633—2000[S]. Beijing: China Standard Press, 2000(in Chinese).
|
[22] |
中国国家标准化管理委员会. 塑料负荷变形温度的测定 第2部分: 塑料、硬橡胶和长纤维增强复合材料: GB/T 1634.2—2004[S]. 北京: 中国标准出版社, 2004.
Standardization Administration of the People's Republic of China. Determination of load-deformation temperature of plastics. Part 2: Plastics, hard rubber and long fiber reinforced composites: GB/T 1634.2—2004[S]. Beijing: China Standard Press, 2004(in Chinese).
|
[23] |
付蕾, 张利超, 尹红艳, 等. 加料顺序对PLA/PBS/PEG共混物的力学性能及耐热性影响[J]. 工程塑料应用, 2022, 50(3):80-85. DOI: 10.3969/j.issn.1001-3539.2022.03.014
FU Lei, ZHANG Lichao, YIN Hongyan, et al. Effect of feeding sequence on mechanical properties and heat resistance of PLA/PBS/PEG blends[J]. Engineering Plastics Application,2022,50(3):80-85(in Chinese). DOI: 10.3969/j.issn.1001-3539.2022.03.014
|
[24] |
刘洒文. 聚乳酸/聚丁二酸丁二醇酯共混增容改性研究[D]. 武汉: 武汉理工大学, 2020.
LIU Sawen. Study on blending modification of polylactic acid/polybutylene succinate[D]. Wuhan: Wuhan University of Technology, 2020(in Chinese).
|
[25] |
王广静, 徐长妍, 朱赛玲, 等. 椰枝纤维基木塑复合材料的动态机械分析[J]. 塑料工业, 2014, 42(5):62-66. DOI: 10.3969/j.issn.1005-5770.2014.05.015
WANG Guangjing, XU Changyan, ZHU Sailing, et al. Dynamic mechanical properties of coconut palm petiole fiber/wood plastic composites[J]. China Plastics Industry,2014,42(5):62-66(in Chinese). DOI: 10.3969/j.issn.1005-5770.2014.05.015
|
[26] |
RAGHU M J, GOUD G. Development of Calotropis procera-glass fibers reinforced epoxy hybrid composites: Dynamic mechanical properties[J]. Journal of Natural Fibers,2022,19(2):395-402. DOI: 10.1080/15440478.2020.1745119
|
[27] |
周承波. 聚乳酸冷结晶行为的研究[D]. 天津: 天津大学, 2017.
ZHOU Chengbo. Study on cold crystallization behavior of poly(lactic acid)[D]. Tianjin: Tianjin University, 2017(in Chinese).
|
[28] |
姚奕强. 聚乳酸基纤维增强复合材料的制备及其性能研究[D]. 无锡: 江南大学, 2022.
YAO Yiqiang. Preparation and properties of fiber reinforced polylactide composites[D]. Wuxi: Jiangnan University, 2022(in Chinese).
|
[29] |
郝明洋. 原位反应加工制备聚乳酸/剑麻纤维复合材料及其结构与性能研究[D]. 广州: 华南理工大学, 2018.
HAO Mingyang. Preparation of polylactide/sisal fibers biocomposites via in-situ reaction processing and investigation on its structure and properties[D]. Guangzhou: South China University of Technology, 2018(in Chinese).
|
[30] |
李因文, 徐守芳, 马登学. 以玻璃化转变温度串联的高分子物理教学探究[J]. 高分子通报, 2020(9):74-78.
LI Yinwen, XU Shoufang, MA Dengxue. Study of the glass transition temperature (Tg) as the series connection in polymer physics teaching[J]. Polymer Bulletin,2020(9):74-78(in Chinese).
|
[31] |
余秋豪, 单海霞, 黄宏魏, 等. 聚乳酸/聚丁二酸丁二醇酯/二苯基甲烷二异氰酸酯共混体系的结构与性能[J]. 高分子材料科学与工程, 2020, 36(3):59-65, 72. DOI: 10.16865/j.cnki.1000-7555.2020.0019
YU Qiuhao, SHAN Haixia, HUANG Hongwei, et al. Structure and performance of polylactic acid/poly(butyric acid butyl glycol ester)/diphenylmethane diisocyanate mixing system[J]. Polymer Materials Science and Engineering,2020,36(3):59-65, 72(in Chinese). DOI: 10.16865/j.cnki.1000-7555.2020.0019
|
[32] |
张晓娜. 亚胺型与对苯二酚型液晶环氧树脂合成与固化动力学[D]. 保定: 河北大学, 2009.
ZHANG Xiaona. Synthysis and cure kinetics of imine and 1, 4-dihydroxy-benzene liquid crystalline epoxy resins[D]. Baoding: Hebei University, 2009(in Chinese).
|
[33] |
杨皓然, 张荣希, 段同生, 等. 高韧耐热PLA/PBS共混材料的制备及性能[J]. 工程塑料应用, 2022, 50(6):25-30. DOI: 10.3969/j.issn.1001-3539.2022.06.005
YANG Haoran, ZHANG Rongxi, DUAN Tongsheng, et al. Preparation and properties of PLA/PBS blends with high toughness and heat resistance[J]. Engineering Plastics Application,2022,50(6):25-30(in Chinese). DOI: 10.3969/j.issn.1001-3539.2022.06.005
|
[34] |
李翔宇, 郭宇芳, 张清清, 等. PEG对PLA/PBS共混物结构与性能的影响[J]. 塑料, 2019, 48(6):46-50, 61.
LI Xiangyu, GUO Yufang, ZHANG Qingqing, et al. Effect of PEG on microstructure and properties of PLA/PBS blend[J]. Plastics,2019,48(6):46-50, 61(in Chinese).
|
[35] |
YOKOHARA T, YAMAGUCHI M. Structure and properties for biomass-based polyester blends of PLA and PBS[J]. European Polymer Journal,2008,44(3):677-685. DOI: 10.1016/j.eurpolymj.2008.01.008
|
[36] |
胡建鹏, 郭明辉. 木质素磺酸铵对聚乳酸/木纤维可生物降解复合材料力学与热性能的影响[J]. 复合材料学报, 2015, 32(3):657-664. DOI: 10.13801/j.cnki.fhclxb.20140718.001
HU Jianpeng, GUO Minghui. Influence of ammonium lignosulphonate on mechanical and thermal properties of polylactic acid/wood fiber biodegradable composites[J]. Acta Materiae Compositae Sinica,2015,32(3):657-664(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20140718.001
|
[37] |
LIM L T, AURAS R, RUBINO M. Processing technologies for poly(lactic acid)[J]. Progress in Polymer Science,2008,33(8):820-852. DOI: 10.1016/j.progpolymsci.2008.05.004
|
[38] |
郑茜仁. 竹纤维/PLA/PBS复合材料的制备及性能研究[D]. 杭州: 浙江理工大学, 2022.
ZHENG Qianren. Preparation and properties of bamboo fiber/PLA/PBS composites[D]. Hangzhou: Zhejiang Polytechnic University, 2022(in Chinese).
|
[39] |
CHUAYJULJIT S, WONGWAIWATTANAKUL C, CHAIWUTTHINAN P, et al. Biodegradable poly(lactic acid)/poly(butylene succinate)/wood flour composites: Physical and morphological properties[J]. Polymer Composites,2017,38(12):2841-2851. DOI: 10.1002/pc.23886
|