Volume 41 Issue 8
Aug.  2024
Turn off MathJax
Article Contents
YE Hanhui, XU Shengliang, MAO Ming, et al. Axial compressive performance and design model of fiber wound GFRP tube confined concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4246-4258. doi: 10.13801/j.cnki.fhclxb.20240008.005
Citation: YE Hanhui, XU Shengliang, MAO Ming, et al. Axial compressive performance and design model of fiber wound GFRP tube confined concrete[J]. Acta Materiae Compositae Sinica, 2024, 41(8): 4246-4258. doi: 10.13801/j.cnki.fhclxb.20240008.005

Axial compressive performance and design model of fiber wound GFRP tube confined concrete

doi: 10.13801/j.cnki.fhclxb.20240008.005
Funds:  Transportation Science and Technology Project of Ningbo City (202207); Zhejiang Province Basic Public Welfare Research Project (LGG22E080007); National Natural Science Foundation of China (51878606)
  • Received Date: 2023-10-30
  • Accepted Date: 2023-12-30
  • Rev Recd Date: 2023-12-21
  • Available Online: 2024-01-09
  • Publish Date: 2024-08-01
  • 54 fiber-wound glass fiber reinforced polymer (GFRP) tube confined concrete cylindrical specimens classified in eighteen groups were designed and manufactured, and the parameters included the number of fiber layers (6, 10), fiber angle ($ \pm 45^\circ $, $ \pm 60^\circ $, $ \pm 80^\circ $), slenderness ratio (2, 4) and compression section (full section, core concrete). Based on the axial compression test results, a design-oriented peak stress prediction model in terms of fiber angle was proposed. The results show that GFRP tube can effectively improve the strength and ductility of confined specimens. The peak strength of the specimen increases with the increase of fiber angle and layer number, and the increase of the peak strength of the specimen with large slenderness ratio is larger. The full section compression will adversely affect the circumferential properties of the confined specimen. The confined pattern is mainly determined by the fiber angle. The specimens with ±60° and ±80° angles are strong confinement, and reveal brittle failure mode. The specimens with ±45° angle are weak confinement, and reveal ductile failure mode. By studying the mathematical relationship between the peak strength and the effective confinement strength, the simplified design-oriented model was derived, which has sufficient precision for solving the peak strength of specimens with different fiber angles, and can provide reference for relevant engineering applications.

     

  • loading
  • [1]
    HARRIES K A, KHAREL G. Experimental investigation of the behavior of variably confined concrete[J]. Cement and Concrete Research, 2003, 33(6): 873-880. doi: 10.1016/S0008-8846(02)01086-4
    [2]
    LAM L, TENG J G. Ultimate condition of fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2004, 8(6): 539-548. doi: 10.1061/(ASCE)1090-0268(2004)8:6(539)
    [3]
    AU C, BUYUKOZTURK O. Effect of fiber orientation and ply mix on fiber reinforced polymer-confined concrete[J]. Journal of Composites for Construction, 2005, 9(5): 397-407. doi: 10.1061/(ASCE)1090-0268(2005)9:5(397)
    [4]
    CHAALLAL O, HASSAN M, LEBLANC M. Circular columns confined with FRP: Experimental versus predictions of models and guidelines[J]. Journal of Composites for Construction, 2006, 10(1): 4-12. doi: 10.1061/(ASCE)1090-0268(2006)10:1(4)
    [5]
    LI G Q, MARICHERLA D, SINGH K, et al. Effect of fiber orientation on the structural behavior of FRP wrapped concrete cylinders[J]. Composite Structures, 2006, 74(4): 475-483. doi: 10.1016/j.compstruct.2005.05.001
    [6]
    EID R, ROY N, PAULTRE P. Normal- and high-strength concrete circular elements wrapped with FRP composites[J]. Journal of Composites for Construction, 2009, 13(2): 113-124. doi: 10.1061/(ASCE)1090-0268(2009)13:2(113)
    [7]
    ISSA C A, CHAMI P, SAAD G. Compressive strength of concrete cylinders with variable widths CFRP wraps: Experimental study and numerical modeling[J]. Construction and Building Materials, 2009, 23(6): 2306-2318. doi: 10.1016/j.conbuildmat.2008.11.009
    [8]
    LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and Building Materials, 2003, 17(6-7): 471-489. doi: 10.1016/S0950-0618(03)00045-X
    [9]
    SAAFI M, TOUTANJI H A, LI Z J. Behavior of concrete columns confined with fiber reinforced polymer tubes[J]. ACI Materials Journal, 1999, 96(4): 500-509.
    [10]
    KARBHARI V M, GAO Y Q. Composite jacketed concrete under uniaxial compression-Verification of simple design equations[J]. Journal of Materials in Civil Engineering, 1997, 9(4): 185-193. doi: 10.1061/(ASCE)0899-1561(1997)9:4(185)
    [11]
    WU Y F, WANG L M. Unified strength model for square and circular concrete columns confined by external jacket[J]. Journal of Structural Engineering, 2009, 135(3): 253-261. doi: 10.1061/(ASCE)0733-9445(2009)135:3(253)
    [12]
    MATTHYS S, TOUTANJI H, TAERWE L. Stress-strain behavior of large-scale circular columns confined with FRP composites[J]. Journal of Structural Engineering, 2006, 132(1): 123-133. doi: 10.1061/(ASCE)0733-9445(2006)132:1(123)
    [13]
    YOUSSEF M N, FENG M Q, MOSALLAM A S. Stress-strain model for concrete confined by FRP composites[J]. Composites Part B: Engineering, 2007, 38(5-6): 614-628. doi: 10.1016/j.compositesb.2006.07.020
    [14]
    秦国鹏, 王连广, 周乐. GFRP管混凝土组合柱轴压性能研究[J]. 工业建筑, 2009, 39(10): 72-75.

    QIN Guopeng, WANG Lianguang, ZHOU Le. Study on bearing capacity of axially-loaded GFRP tube composite columns filled with concrete[J]. Industrial Construction, 2009, 39(10): 72-75(in Chinese).
    [15]
    杨俊杰, 周涛, 章雪峰. FRP管实心混凝土柱承载力的轴压试验研究[J]. 建筑结构, 2014, 44(22): 72-75, 89.

    YANG Junjie, ZHOU Tao, ZHANG Xuefeng. Experimental research on bearing capacity of FRP tube solid concrete column under axial loading[J]. Building Structure, 2014, 44(22): 72-75, 89(in Chinese).
    [16]
    张冰, 魏威, 冯贵森, 等. 纤维角度对GFRP约束混凝土短柱轴压性能的影响[J]. 建筑结构学报, 2019, 40(S1): 192-199.

    ZHANG Bing, WEI Wei, FENG Guisen, et al. Influences of fiber angles on axial compressive behavior of GFRP-confined concrete stub column[J]. Journal of Building Structures, 2019, 40(S1): 192-199(in Chinese).
    [17]
    BETTS D, SADEGHIAN P, FAM A. Investigation of the stress-strain constitutive behavior of ±55° filament wound GFRP pipes in compression and tension[J]. Composites Part B: Engineering, 2019, 172: 243-252. doi: 10.1016/j.compositesb.2019.05.077
    [18]
    SILVA M A, RODRIGUES C C. Size and relative stiffness effects on compressive failure of concrete columns wrapped with glass FRP[J]. Journal of Materials in Civil Engineering, 2006, 18(3): 334-342. doi: 10.1061/(ASCE)0899-1561(2006)18:3(334)
    [19]
    龙跃凌, 蔡兆琼, 黄启山, 等. GFRP管约束混凝土短柱轴压性能和尺寸效应研究[J]. 混凝土, 2015(9): 47-49. doi: 10.3969/j.issn.1002-3550.2015.09.013

    LONG Yueling, CAI Zhaoqiong, HUANG Qishan, et al. Research on axial load behavior and size efects of GFRP confined concrete stub columns[J]. Concrete, 2015(9): 47-49(in Chinese). doi: 10.3969/j.issn.1002-3550.2015.09.013
    [20]
    MIRMIRAN A, SHAHAWY M, BEITLEMAN T. Slenderness limit for hybrid FRP-concrete columns[J]. Journal of Composites for Construction, 2001, 5: 26-34. doi: 10.1061/(ASCE)1090-0268(2001)5:1(26)
    [21]
    章雪峰, 单鲁阳, 杨城, 等. GFRP管混凝土组合长柱的轴心受压特性研究[J]. 建筑结构, 2018, 48(9): 72-77.

    ZHANG Xuefeng, SHAN Luyang, YANG Cheng, et al. Study on axial compressive capacity characteristics of long concrete-filled GFRP tube composite columns[J]. Building Structure, 2018, 48(9): 72-77(in Chinese).
    [22]
    杨俊杰, 杨城. GFRP管混凝土长柱轴压极限承载力研究[J]. 浙江工业大学学报, 2015, 43(6): 685-689, 698. doi: 10.3969/j.issn.1006-4303.2015.06.018

    YANG Junjie, YANG Cheng. Research on the bearing capacity of long GFRP-reinforced concrete composite columns subjected to axial compression[J]. Journal of Zhejiang University of Technology, 2015, 43(6): 685-689, 698(in Chinese). doi: 10.3969/j.issn.1006-4303.2015.06.018
    [23]
    周乐, 王连广, 门兆红. GFRP管高强混凝土组合柱轴心受压试验研究[J]. 公路交通科技(应用技术版), 2009, 5(4): 82-84.

    ZHOU Le, WANG Lianguang, MEN Zhaohong. Experimental study on axial compression of GFRP tube high-strength concrete composite column[J]. Journal of Highway and Transportation Research and Development, 2009, 5(4): 82-84(in Chinese).
    [24]
    王玉清, 徐静, 张鑫鑫, 等. GFRP管混凝土短柱轴压力学性能的试验研究[J]. 内蒙古工业大学学报(自然科学版), 2012, 31(2): 64-69.

    WANG Yuqing, XU Jing, ZHANG Xinxin, et al. Experimental resarch on behavior of axially loaded concrete columns confined with GFRP pipes[J]. Journal of Inner Mongolia University of Technology (Natural Science), 2012, 31(2): 64-69(in Chinese).
    [25]
    JIN L, LI X R, FAN L L, et al. Size effect on compressive strength of GFRP-confined concrete columns: Numerical simulation[J]. Journal of Composites for Construction, 2020, 24(5): 04020038. doi: 10.1061/(ASCE)CC.1943-5614.0001041
    [26]
    金浏, 李秀荣, 杜修力, 等. GFRP增强混凝土圆柱轴压强度尺寸效应: 细观分析[J]. 水利学报, 2019, 50(4): 409-419.

    JIN Liu, LI Xiurong, DU Xiuli, et al. Size effect of axial compressive strength of circular concrete columns strengthened by GFRP: A meso-scale analysis[J]. Journal of Hydraulic Engineering, 2019, 50(4): 409-419(in Chinese).
    [27]
    张玉强, 武梦洋, 郭启琛, 等. 椭圆形GFRP管混凝土短柱轴压力学性能试验研究[J]. 混凝土, 2020(8): 7-9, 14. doi: 10.3969/j.issn.1002-3550.2020.08.002

    ZHANG Yuqiang, WU Mengyang, GUO Qichen, et al. Experimental research on axial compressive behavior of elliptical concrete-filled GFRP tubular stub columns[J]. Concrete, 2020(8): 7-9, 14(in Chinese). doi: 10.3969/j.issn.1002-3550.2020.08.002
    [28]
    JUNG W Y, KWON M H, JU B S. Evaluation of compressive strength of concrete members laterally confined by various FRP composites and exposed to high temperatures[J]. KSCE Journal of Civil Engineering, 2015, 20(6): 2410-2419.
    [29]
    张云峰, 程凡荣, 李文锦, 等. 冻融循环作用后GFRP管混凝土轴压短柱力学性能[J]. 混凝土, 2022(6): 13-19. doi: 10.3969/j.issn.1002-3550.2022.06.003

    ZHANG Yunfeng, CHENG Fanrong, LI Wenjin, et al. Mechanical properties of short axially compressed columns of GFRP pipe concrete after freeze-thaw cycles[J]. Concrete, 2022(6): 13-19(in Chinese). doi: 10.3969/j.issn.1002-3550.2022.06.003
    [30]
    梁旭宇, 池寅, 曾彦钦, 等. GFRP管约束超高性能混凝土单轴受压应力-应变关系试验研究[J]. 武汉大学学报(工学版), 2020, 53(6): 498-506.

    LIANG Xuyu, CHI Yin, ZENG Yanqin, et al. Experimental studies on stress-strain relationship of ultra-high performance concrete confined by GFRP tube under uniaxial compression[J]. Engineering Journal of Wuhan University, 2020, 53(6): 498-506(in Chinese).
    [31]
    HUANG D M, LIU Z Z, MA W T, et al. Steel fiber-reinforced recycled aggregate concrete-filled GFRP tube columns: Axial compression performance[J]. Construction and Building Materials, 2023, 403: 133143. doi: 10.1016/j.conbuildmat.2023.133143
    [32]
    CAO Q, LI H, LIN Z B. Study on the active confinement of GFRP-confined expansive concrete under axial compression[J]. Construction and Building Materials, 2019, 227: 116683. doi: 10.1016/j.conbuildmat.2019.116683
    [33]
    XIE P, LAM L, JIANG T. Compressive behavior of GFRP tubes filled with self-compacting concrete[J]. Journal of Composites for Construction, 2023, 27(1): 04022103. doi: 10.1061/JCCOF2.CCENG-3937
    [34]
    DABBAGH H, DELSHAD M, AMOOREZAEI K. Design-oriented stress-strain model for FRP-confined lightweight aggregate concrete[J]. KSCE Journal of Civil Engineering, 2020, 25(1): 219-234.
    [35]
    杨霞, 杨文伟, 李顺涛. 采用CFRP增强的GFRP管混凝土短柱轴压性能试验研究[J]. 土木与环境工程学报, 2022, 44(4): 124-132.

    YANG Xia, YANG Wenwei, LI Shuntao. Experimental study on axial compression behavior of concrete-filled GFRP tube short columns strengthened with CFRP[J]. Journal of Civil and Environmental Engineering, 2022, 44(4): 124-132(in Chinese).
    [36]
    HE K, CHEN Y. Experimental evaluation of built-in channel steel concrete-filled GFRP tubular stub columns under axial compression[J]. Composite Structures, 2019, 219: 51-68. doi: 10.1016/j.compstruct.2019.03.057
    [37]
    XUE B, GONG J. Study on steel reinforced concrete-filled GFRP tubular column under compression[J]. Thin-Walled Structures, 2016, 106: 1-8. doi: 10.1016/j.tws.2016.04.023
    [38]
    YAHIAOUI D, SAADI M, BOUZID T. Compressive behavior of concrete containing glass fibers and confined with glass FRP composites[J]. International Journal of Concrete Structures and Materials, 2022, 16(37): 1-19.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(4)

    Article Metrics

    Article views (299) PDF downloads(27) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return