Volume 37 Issue 7
Aug.  2020
Turn off MathJax
Article Contents
TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001
Citation: TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2020, 37(7): 1629-1638. doi: 10.13801/j.cnki.fhclxb.20190827.001

Meso-scale numerical simulation of axial compression performance of fiber reinforced polymer composite-confined ultra-high performance concrete

doi: 10.13801/j.cnki.fhclxb.20190827.001
  • Received Date: 2019-07-12
  • Accepted Date: 2019-08-19
  • Available Online: 2019-08-28
  • Publish Date: 2020-07-15
  • To investigate the axial compressive performance of fiber reinforced polymer (FRP) composite-confined ultra-high performance concrete (UHPC) cylindrical specimens, the meso-scale finite element model was established in LS-DYNA and validated by the comparison of the experimental data. The formula of shear dilation parameter of K&C model was proposed, which could accurately reflect the FRP composites confinement for UHPC. Based on the validated model, a parametric analysis was conducted to investigate the influence of FRP composite tube thickness, FRP composites fiber winding angle and steel fiber content. The results show that the model can not only capture the effect of random distributed steel fibers on the specimen stress distribution, but also accurately reflect the enhancement of strength and ductility of UHPC core subjected to FRP composite confinement. Good agreement is found in failure modes and stress-strain curves between simulation and experimental results. Parametric studies show that with the increase of FRP composite tubes thickness and FRP composite fiber winding angle, the strength and ductility of the FRP composite-confined UHPC specimens are significantly enhanced. An increase in steel fiber content can effectively restrain the inclined shear cracks in UHPC core, but has little effect on the strength and ductility of the specimens.

     

  • loading
  • [1]
    郑文忠, 吕雪源. 活性粉末混凝土研究进展[J]. 建筑结构学报, 2015, 36(10):44-58.

    ZHENG Wenzhong, LV Xueyuan. Literature review of reactive powder concrete[J]. Journal of Building Structures,2015,36(10):44-58(in Chinese).
    [2]
    梁兴文, 胡翱翔, 于婧, 等. 钢纤维对超高性能混凝土抗弯力学性能的影响[J]. 复合材料学报, 2018, 35(3):722-731.

    LIANG Xingwen, HU Aoxiang, YU Jing, et al. Effect of steel fibers on the flexural response of ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(3):722-731(in Chinese).
    [3]
    管品武, 涂雅筝, 张普, 等. 超高性能混凝土单轴拉压本构关系研究[J]. 复合材料学报, 2019, 36(5):1295-1305.

    GUAN Pinwu, TU Yazheng, ZHANG Pu, et al. A review on constitutive relationship of ultra-high performance concrete under uniaxial compression andtension[J]. Acta Materiae Compositae Sinica,2019,36(5):1295-1305(in Chinese).
    [4]
    SHI C, WU Z, XIAO J, et al. A review on ultra high performance concrete Part Ⅰ: Raw materials and mixture design[J]. Construction and Building Materials,2015,101:741-751. doi: 10.1016/j.conbuildmat.2015.10.088
    [5]
    WEI Y Y, WU Y F. Unified stress-strain model of concrete for FRP-confined columns[J]. Construction and Building Materials,2012,26(1):381-392. doi: 10.1016/j.conbuildmat.2011.06.037
    [6]
    潘毅, 万里, 吴晓飞, 等. 负载下碳纤维布约束混凝土柱应力-应变关系的有限元分析[J]. 工业建筑, 2015, 45(s2):6-11.

    PAN Yi, WAN Li, WU Xiaofei, et al. Finite element analysis of the axial stress-strain relationship of concrete columns confined by CFRP under preload[J]. Industrial Construction,2015,45(s2):6-11(in Chinese).
    [7]
    YU T, ZHANG B, TENG J G. Unified cyclic stress-strain model for normal and high strength concrete confined with FRP[J]. Engineering Structures,2015,102:189-201. doi: 10.1016/j.engstruct.2015.08.014
    [8]
    ZOHREVAND P, MIRMIRAN A. Behavior of ultrahigh-performance concrete confined by fiber-reinforced polymers[J]. Journal of Materials in Civil Engineering,2011,23(12):1727-1734. doi: 10.1061/(ASCE)MT.1943-5533.0000324
    [9]
    GULER S. Axial behavior of FRP-wrapped circular ultra-high performance concrete specimens[J]. Structural Engineering & Mechanics,2014,50(6):709-722.
    [10]
    WANG W Q, WU C Q, LIU Z X, et al. Compressive behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) confined with FRP[J]. Composite Structures,2018,204:419-437. doi: 10.1016/j.compstruct.2018.07.102
    [11]
    田会文, 周臻, 陆纪平, 等. 钢纤维掺量对FRP管约束超高性能混凝土轴压性能的影响[J]. 东南大学学报(自然科学版), 2019, 49(3):481-487. doi: 10.3969/j.issn.1001-0505.2019.03.011

    TIAN Huiwen, ZHOU Zhen, LU Jiping, et al. Effects of steel fiber content on axial compression performance of UHPC filled FRP tubes[J]. Journal of Southeast University (Natural Science Edition),2019,49(3):481-487(in Chinese). doi: 10.3969/j.issn.1001-0505.2019.03.011
    [12]
    金浏, 杜修力. 钢筋混凝土构件细观数值模拟分析[J]. 水利学报, 2012, 43(10):1230-1236.

    JIN Liu, DU Xiuli. Meso numerical simulation of reinforced concrete members[J]. Journal of Hydraulic Engineering,2012,43(10):1230-1236(in Chinese).
    [13]
    XU Z, HAO H, LI H N. Mesoscale modelling of fibre reinforced concrete material under compressive impact loading[J]. Construction and Building Materials,2012,26(1):274-288. doi: 10.1016/j.conbuildmat.2011.06.022
    [14]
    LIANG X, WU C. Meso-scale modelling of steel fibre reinforced concrete with high strength[J]. Construction and Building Materials,2018,165:187-198. doi: 10.1016/j.conbuildmat.2018.01.028
    [15]
    赵秋山, 徐慎春, 刘中宪. 钢纤维增强超高性能混凝土抗压性能的细观数值模拟[J]. 复合材料学报, 2018, 35(6):1661-1673.

    ZHAO Qiushan, XU Shenchun, LIU Zhongxian. Microscopic numerical simulation of the uniaxial compression of steel fiber reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica,2018,35(6):1661-1673(in Chinese).
    [16]
    XU S, WU C, LIU Z, et al. Numerical study of ultra-high-performance steel fibre-reinforced concrete columns under monotonic push loading[J]. Advances in Structural Engineering,2018,21(8):1234-1248. doi: 10.1177/1369433217747710
    [17]
    ELSANADEDY H M, AL-SALLOUM Y A, ALSAYED S H, et al. Experimental and numerical investigation of size effects in FRP-wrapped concrete columns[J]. Construction and Building Materials,2012,29:56-72. doi: 10.1016/j.conbuildmat.2011.10.025
    [18]
    FERROTTO M F, FISCHER O, CAVALERI L. A strategy for the finite element modeling of FRP-confined concrete columns subjected to preload[J]. Engineering Structures,2018,173:1054-1067. doi: 10.1016/j.engstruct.2018.07.047
    [19]
    WU Y, CRAWFORD J E. Numerical modeling of concrete using a partially associative plasticity model[J]. Journal of Engineering Mechanics,2015,141(12):04015051. doi: 10.1061/(ASCE)EM.1943-7889.0000952
    [20]
    XU M, WILLE K. Calibration of K&C concrete model for UHPC in LS-DYNA[J]. Advanced Materials Research,2015,1081:254-259.
    [21]
    YOUSSF O, ELGAWADY M A, MILLS J E, et al. Finite element modelling and dilation of FRP-confined concrete columns[J]. Engineering Structures,2014,79:70-85. doi: 10.1016/j.engstruct.2014.07.045
    [22]
    WU Z, SHI C, HE W, et al. Effects of steel fiber content and shape on mechanical properties of ultra high performance concrete[J]. Construction and Building Materials,2016,103:8-14. doi: 10.1016/j.conbuildmat.2015.11.028
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(17)  / Tables(5)

    Article Metrics

    Article views (1085) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return