LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. DOI: 10.13801/j.cnki.fhclxb.20230222.004
Citation: LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. DOI: 10.13801/j.cnki.fhclxb.20230222.004

A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity

Funds: National Natural Science Foundation of China (21573003); Natural Science Foundation of Jilin Province (20140101118JC)
More Information
  • Received Date: December 12, 2022
  • Revised Date: February 05, 2023
  • Accepted Date: February 09, 2023
  • Available Online: February 21, 2023
  • Photocatalytic reduction technology of CO2 can not only achieve energy saving and emission reduction, but also alleviate energy shortage, which is in line with today's concept of green and sustainable development. By employing electrospun TiO2 nanofibers as substrate, bismuth-rich Bi4O5Br2/TiO2 composite fibers were prepared combining with in-situ hydrothermal reduction method. The composition, morphology and photoelectric properties were characterized by XRD, SEM, HRTEM, XPS, UV-Vis and carbon adsorption. The results show that the band gap of Bi4O5Br2/TiO2 composite fibers becomes width, there is obvious absorption in the visible light band, and the reduction ability of photogenerated electrons is enhanced. Bi4O5Br2/TiO2 composite fibers can reduce CO2 to CH4 and CO, while the enrichment of the metal Bi can not only improve the adsorption capacity of the catalyst for acidic CO2 molecules and enhance the conversion efficiency, but also change the photocatalytic reaction path and generate alcohol products such as CH3OH. The CH4, CO and CH3OH yields of the optimized photocatalyst Bi@Bi4O5Br2/TiO2 composite fibers were 3.87, 1.06 and 0.32 μmol·h−1·g−1, respectively, after simulated sunlight irradiation 3 h. This work provides new opportunities for exploring high-efficiency CO2 photoreduction catalysts.
  • [1]
    HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie,2022,61(17):202200802.
    [2]
    CHENG L, YUE X Y, FAN J J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions[J]. Advanced Materials,2022,34(27):2200929. DOI: 10.1002/adma.202200929
    [3]
    FENG X H, PAN F P, TRAN B Z, et al. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles[J]. Catalysis Today,2020,339:328-336. DOI: 10.1016/j.cattod.2019.03.012
    [4]
    LOW J X, CHENG B, YU J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review[J]. Applied Surface Science,2017,392:658-686. DOI: 10.1016/j.apsusc.2016.09.093
    [5]
    JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature,2020,586(7830):549-554. DOI: 10.1038/s41586-020-2738-2
    [6]
    MA Y J, YI X X, WANG S L, et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2[J]. Nature Communications,2022,13(1):1400. DOI: 10.1038/s41467-021-27699-2
    [7]
    LI C G, ZHAO J G, XIONG Z, et al. Selective photocatalytic reduction of CO2 into CH4 by Pt and Cu co-modified TiO2[J]. Clean Coal Technology,2020,26(4):162-167.
    [8]
    MENG A Y, WU S, CHENG B, et al. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance[J]. Journal of Materials Chemistry A,2018,6(11):4729-4736. DOI: 10.1039/C7TA10073F
    [9]
    LI Y X, HUI D P, SUN Y Q, et al. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators[J]. Nature Communications,2021,12(1):123. DOI: 10.1038/s41467-020-20444-1
    [10]
    PAN F P, XIANG X M, DU Z C, et al. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating[J]. Applied Catalysis B: Environmental, 2020, 260: 118189.
    [11]
    陈子尚, 梁小平, 樊小伟, 等. Ce-La-Ag 共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7):515-522.

    CHEN Z S, LIANG X P, FAN X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst[J]. Chinese Journal of Materials Research,2019,33(7):515-522(in Chinese).
    [12]
    ZHOU C X, JIANG C P, WANG R L, et al. SPR-effect enhanced semimetallic Bi0/p-BiOI/n-CdS photocatalyst with spatially isolated active sites and improved carrier transfer kinetics for H2 evolution[J]. Industrial & Engineering Chemistry Research,2020,59(17):8183-8194.
    [13]
    WEI Z D, LIU J Y, FANG W J, et al. Photocatalytic hydrogen energy evolution from antibiotic wastewater via metallic Bi nanosphere doped g-C3N4: Performances and mechanisms[J]. Catalysis Science & Technology,2019,9(19):5279-5291.
    [14]
    SHI X, DONG X A, HE Y, et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction[J]. ACS Catalysis,2022,12(7):3965-3973. DOI: 10.1021/acscatal.2c00157
    [15]
    ZHANG L L, YUE X P, LIU J X, et al. Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation[J]. Separation and Purification Technology,2020,231:115917. DOI: 10.1016/j.seppur.2019.115917
    [16]
    DONG X A, CUI Z H, SHI X, et al. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation[J]. Angewandte Chemie International Edition,2022,61(19):202200937.
    [17]
    LI D S, ZHU B C, SUN Z G, et al. Construction of UiO-66/Bi4O5Br2 type-II heterojunction to boost charge transfer for promoting photocatalytic CO2 reduction performance[J]. Frontiers in Chemistry,2021,9:804204. DOI: 10.3389/fchem.2021.804204
    [18]
    JIN X L, LYU C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955. DOI: 10.1016/j.nanoen.2019.103955
    [19]
    LI Y J, CAO T P, MEI Z M, et al. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. Journal of Physics and Chemistry of Solids,2020,142:109457. DOI: 10.1016/j.jpcs.2020.109457
    [20]
    申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.

    SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuSBi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
    [21]
    YAN J Q, WU G J, GUAN N J, et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Physical Chemistry Chemi-cal Physics,2013,15(26):10978-10988. DOI: 10.1039/c3cp50927c
    [22]
    HE Q, NI Y H, YE S Y. Heterostructured Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Advances,2017,7(43):27089-27099. DOI: 10.1039/C7RA02760E
    [23]
    XU H, YAN B, ZHANG K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Science,2017,416:191-199. DOI: 10.1016/j.apsusc.2017.04.160
    [24]
    QIU F Z, LI W J, WANG F Z, et al. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light[J]. Journal of Colloid and Interface Science,2017,493:1-9. DOI: 10.1016/j.jcis.2016.12.066
    [25]
    SU C Y, LIU L, ZHANG M Y, et al. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach[J]. CrystEngComm,2012,14(11):3989-3999. DOI: 10.1039/c2ce25161b
    [26]
    JI M X, DI J, GE Y P, et al. 2D-2D stacking of graphene-like g-C3N4/ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal[J]. Applied Surface Science,2017,413:372-380. DOI: 10.1016/j.apsusc.2017.03.287
    [27]
    CUI Z K, ZHANG Y G, LI S L, et al. Preparation and photocatalytic performance of Bi nanoparticles by microwave-assisted method using ascorbic acid as reducing agent[J]. Catalysis Communications,2015,72:97-100. DOI: 10.1016/j.catcom.2015.09.024
    [28]
    WANG M, HAN Q T, ZHOU Y, et al. TiO2 nanosheet-anchoring Au nanoplates: High-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction[J]. RSC Advances,2016,6(85):81510-81516. DOI: 10.1039/C6RA14821B
    [29]
    YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale,2020,12(13):7000-7010. DOI: 10.1039/C9NR09743K
    [30]
    XU M, WU H, TANG Y W, et al. One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Microporous and Mesoporous Materials,2020,309:110539. DOI: 10.1016/j.micromeso.2020.110539
    [31]
    XU M, HU X T, WANG J Y, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis,2019,377:652-661. DOI: 10.1016/j.jcat.2019.08.010
    [32]
    FENG W, WU J A. Photocatalytic reduction of CO2 under visible light over Fe/TiO2/rGO nanocomposites by one-step hydrothermal synthesis[J]. Earth and Environmental Science,2020,513:012012.
    [33]
    LIU Y, GUO J G, WANG Y, et al. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO[J]. Green Energy & Environment,2021,6(2):244-252. DOI: 10.1016/j.gee.2020.04.014
    [34]
    GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Jour-nal of CO2 Utilization,2019,33:233-241. DOI: 10.1016/j.jcou.2019.05.016
  • Related Articles

    [1]LIU Jinrui, ZHANG Yan, SUN Shishu, SHI Jianjun, SUN Tianyi, SHI Zaifeng. Advances in photoelectrocatalysis and artificial photosynthesis for the reduction of CO2[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5183-5201. DOI: 10.13801/j.cnki.fhclxb.20240204.003
    [2]BAO Yan, ZHAO Haihang, GAO Lu, ZHANG Wenbo. Research progress of electrospinning flame retardant nanofiber[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2801-2814. DOI: 10.13801/j.cnki.fhclxb.20231127.002
    [3]LIU Sitong, JIN Dan, SUN Dongming, WANG Jing, WANG Yuan, WANG Yanhui, LI Yixuan. Research progress of preparation of Janus micro/nano fibers prepared by electrospinning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2321-2332. DOI: 10.13801/j.cnki.fhclxb.20231011.001
    [4]MA Chaoge, FANG Guoli, TIAN Jing, ZHANG Gang, YAN Xianghui. Effect of Bi/Cl atomic ratio on the photocatalytic activities of TiO2/BixOyClz composites[J]. Acta Materiae Compositae Sinica.
    [5]HUANG Xing, ZHU Wenqiang, LI Zhenzhen. Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1841-1856. DOI: 10.13801/j.cnki.fhclxb.20221019.001
    [6]YU Xiang, ZHANG Xueyin, LI Ruyang, ZHAO Yahao, LU Xiaolong. Preparation and photocatalytic properties of TiO2/electrospinning PAN-based carbon composite material[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3177-3183. DOI: 10.13801/j.cnki.fhclxb.20200429.001
    [7]WANG Cuie, LIU Xinhua, WAN Peng, ZHANG Guangzhi. Toward a high-activity photocatalyst via controllable synthesis of nano Ag-carbon nanotube-mixed crystal TiO2 composite fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2304-2311. DOI: 10.13801/j.cnki.fhclxb.20151223.001
    [8]SONG Chao, DONG Xiangting, WANG Jinxian, LIU Guixia. Synthesis and formation mechanism of NiO ZnTiO3 TiO2 coaxial trilayered nanocables by electrospinning[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 122-128.
    [9]CHEN Yingsheng, CHEN Zhen, CHEN Riyao, ZHENG Xi, CHEN Xiao. Preparation and photocatalytic properties of NiO-TiO2 coaxial nanofibers[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 36-41.
    [10]Preparation and characterization of TiO2/SiO2 composite hollow nanof ibres via an electrospinning technique[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 138-143.
  • Cited by

    Periodical cited type(1)

    1. 邓玉婷,林金池,于秀明,朱文韬,杨金辉,谢水波. 新型层状BiOF光催化剂的制备及其应用研究进展. 复合材料学报. 2024(10): 5165-5182 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (913) PDF downloads (32) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return