Citation: | LI Yuejun, CAO Tieping, SUN Dawei. A bismuth-rich Bi4O5Br2/TiO2 composites fibers photocatalyst enables dramatic CO2 reduction activity[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6251-6259. DOI: 10.13801/j.cnki.fhclxb.20230222.004 |
[1] |
HUANG H N, SHI R, LI Z H, et al. Triphase photocatalytic CO2 reduction over silver-decorated titanium oxide at a gas-water boundary[J]. Angewandte Chemie,2022,61(17):202200802.
|
[2] |
CHENG L, YUE X Y, FAN J J, et al. Site-specific electron-driving observations of CO2-to-CH4 photoreduction on Co-doped CeO2/crystalline carbon nitride S-scheme heterojunctions[J]. Advanced Materials,2022,34(27):2200929. DOI: 10.1002/adma.202200929
|
[3] |
FENG X H, PAN F P, TRAN B Z, et al. Photocatalytic CO2 reduction on porous TiO2 synergistically promoted by atomic layer deposited MgO overcoating and photodeposited silver nanoparticles[J]. Catalysis Today,2020,339:328-336. DOI: 10.1016/j.cattod.2019.03.012
|
[4] |
LOW J X, CHENG B, YU J G. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: A review[J]. Applied Surface Science,2017,392:658-686. DOI: 10.1016/j.apsusc.2016.09.093
|
[5] |
JIANG Z, XU X H, MA Y H, et al. Filling metal-organic framework mesopores with TiO2 for CO2 photoreduction[J]. Nature,2020,586(7830):549-554. DOI: 10.1038/s41586-020-2738-2
|
[6] |
MA Y J, YI X X, WANG S L, et al. Selective photocatalytic CO2 reduction in aerobic environment by microporous Pd-porphyrin-based polymers coated hollow TiO2[J]. Nature Communications,2022,13(1):1400. DOI: 10.1038/s41467-021-27699-2
|
[7] |
LI C G, ZHAO J G, XIONG Z, et al. Selective photocatalytic reduction of CO2 into CH4 by Pt and Cu co-modified TiO2[J]. Clean Coal Technology,2020,26(4):162-167.
|
[8] |
MENG A Y, WU S, CHENG B, et al. Hierarchical TiO2/Ni(OH)2 composite fibers with enhanced photocatalytic CO2 reduction performance[J]. Journal of Materials Chemistry A,2018,6(11):4729-4736. DOI: 10.1039/C7TA10073F
|
[9] |
LI Y X, HUI D P, SUN Y Q, et al. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators[J]. Nature Communications,2021,12(1):123. DOI: 10.1038/s41467-020-20444-1
|
[10] |
PAN F P, XIANG X M, DU Z C, et al. Integrating photocatalysis and thermocatalysis to enable efficient CO2 reforming of methane on Pt supported CeO2 with Zn doping and atomic layer deposited MgO overcoating[J]. Applied Catalysis B: Environmental, 2020, 260: 118189.
|
[11] |
陈子尚, 梁小平, 樊小伟, 等. Ce-La-Ag 共掺杂TiO2/玄武岩纤维复合光催化剂的制备和性能[J]. 材料研究学报, 2019, 33(7):515-522.
CHEN Z S, LIANG X P, FAN X W, et al. Fabrication and photocatalytic properties of Ce-La-Ag Co-doped TiO2/basalt fiber composite photocatalyst[J]. Chinese Journal of Materials Research,2019,33(7):515-522(in Chinese).
|
[12] |
ZHOU C X, JIANG C P, WANG R L, et al. SPR-effect enhanced semimetallic Bi0/p-BiOI/n-CdS photocatalyst with spatially isolated active sites and improved carrier transfer kinetics for H2 evolution[J]. Industrial & Engineering Chemistry Research,2020,59(17):8183-8194.
|
[13] |
WEI Z D, LIU J Y, FANG W J, et al. Photocatalytic hydrogen energy evolution from antibiotic wastewater via metallic Bi nanosphere doped g-C3N4: Performances and mechanisms[J]. Catalysis Science & Technology,2019,9(19):5279-5291.
|
[14] |
SHI X, DONG X A, HE Y, et al. Photoswitchable chlorine vacancies in ultrathin Bi4O5Cl2 for selective CO2 photoreduction[J]. ACS Catalysis,2022,12(7):3965-3973. DOI: 10.1021/acscatal.2c00157
|
[15] |
ZHANG L L, YUE X P, LIU J X, et al. Facile synthesis of Bi5O7Br/BiOBr 2D/3D heterojunction as efficient visible-light-driven photocatalyst for pharmaceutical organic degradation[J]. Separation and Purification Technology,2020,231:115917. DOI: 10.1016/j.seppur.2019.115917
|
[16] |
DONG X A, CUI Z H, SHI X, et al. Insights into dynamic surface bromide sites in Bi4O5Br2 for sustainable N2 photofixation[J]. Angewandte Chemie International Edition,2022,61(19):202200937.
|
[17] |
LI D S, ZHU B C, SUN Z G, et al. Construction of UiO-66/Bi4O5Br2 type-II heterojunction to boost charge transfer for promoting photocatalytic CO2 reduction performance[J]. Frontiers in Chemistry,2021,9:804204. DOI: 10.3389/fchem.2021.804204
|
[18] |
JIN X L, LYU C D, ZHOU X, et al. A bismuth rich hollow Bi4O5Br2 photocatalyst enables dramatic CO2 reduction activity[J]. Nano Energy,2019,64:103955. DOI: 10.1016/j.nanoen.2019.103955
|
[19] |
LI Y J, CAO T P, MEI Z M, et al. Development of double heterojunction of Pr2Sn2O7@Bi2Sn2O7/TiO2 for hydrogen production[J]. Journal of Physics and Chemistry of Solids,2020,142:109457. DOI: 10.1016/j.jpcs.2020.109457
|
[20] |
申久英, 刘碧雯, 赵宇翔, 等. CuS-Bi2WO6/活性纳米碳纤维的制备及其光催化性能[J]. 复合材料学报, 2022, 39(3):1163-1172.
SHEN Jiuying, LIU Biwen, ZHAO Yuxiang, et al. Preparation and photocatalytic properties CuSBi2WO6/carbon nanofibers composites[J]. Acta Materiae Compositae Sinica,2022,39(3):1163-1172(in Chinese).
|
[21] |
YAN J Q, WU G J, GUAN N J, et al. Understanding the effect of surface/bulk defects on the photocatalytic activity of TiO2: Anatase versus rutile[J]. Physical Chemistry Chemi-cal Physics,2013,15(26):10978-10988. DOI: 10.1039/c3cp50927c
|
[22] |
HE Q, NI Y H, YE S Y. Heterostructured Bi2O3/Bi2MoO6 nanocomposites: Simple construction and enhanced visible-light photocatalytic performance[J]. RSC Advances,2017,7(43):27089-27099. DOI: 10.1039/C7RA02760E
|
[23] |
XU H, YAN B, ZHANG K, et al. N-doped graphene-supported binary PdBi networks for formic acid oxidation[J]. Applied Surface Science,2017,416:191-199. DOI: 10.1016/j.apsusc.2017.04.160
|
[24] |
QIU F Z, LI W J, WANG F Z, et al. In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light[J]. Journal of Colloid and Interface Science,2017,493:1-9. DOI: 10.1016/j.jcis.2016.12.066
|
[25] |
SU C Y, LIU L, ZHANG M Y, et al. Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach[J]. CrystEngComm,2012,14(11):3989-3999. DOI: 10.1039/c2ce25161b
|
[26] |
JI M X, DI J, GE Y P, et al. 2D-2D stacking of graphene-like g-C3N4/ultrathin Bi4O5Br2 with matched energy band structure towards antibiotic removal[J]. Applied Surface Science,2017,413:372-380. DOI: 10.1016/j.apsusc.2017.03.287
|
[27] |
CUI Z K, ZHANG Y G, LI S L, et al. Preparation and photocatalytic performance of Bi nanoparticles by microwave-assisted method using ascorbic acid as reducing agent[J]. Catalysis Communications,2015,72:97-100. DOI: 10.1016/j.catcom.2015.09.024
|
[28] |
WANG M, HAN Q T, ZHOU Y, et al. TiO2 nanosheet-anchoring Au nanoplates: High-energy facet and wide spectra surface plasmon-promoting photocatalytic efficiency and selectivity for CO2 reduction[J]. RSC Advances,2016,6(85):81510-81516. DOI: 10.1039/C6RA14821B
|
[29] |
YU F, WANG C H, MA H, et al. Revisiting Pt/TiO2 photocatalysts for thermally assisted photocatalytic reduction of CO2[J]. Nanoscale,2020,12(13):7000-7010. DOI: 10.1039/C9NR09743K
|
[30] |
XU M, WU H, TANG Y W, et al. One-step in situ synthesis of porous Fe3+-doped TiO2 octahedra toward visible-light photocatalytic conversion of CO2 into solar fuel[J]. Microporous and Mesoporous Materials,2020,309:110539. DOI: 10.1016/j.micromeso.2020.110539
|
[31] |
XU M, HU X T, WANG J Y, et al. Photothermal effect promoting CO2 conversion over composite photocatalyst with high graphene content[J]. Journal of Catalysis,2019,377:652-661. DOI: 10.1016/j.jcat.2019.08.010
|
[32] |
FENG W, WU J A. Photocatalytic reduction of CO2 under visible light over Fe/TiO2/rGO nanocomposites by one-step hydrothermal synthesis[J]. Earth and Environmental Science,2020,513:012012.
|
[33] |
LIU Y, GUO J G, WANG Y, et al. One-step synthesis of defected Bi2Al4O9/β-Bi2O3 heterojunctions for photocatalytic reduction of CO2 to CO[J]. Green Energy & Environment,2021,6(2):244-252. DOI: 10.1016/j.gee.2020.04.014
|
[34] |
GUO H W, CHEN M Q, ZHONG Q, et al. Synthesis of Z-scheme α-Fe2O3/g-C3N4 composite with enhanced visible-light photocatalytic reduction of CO2 to CH3OH[J]. Jour-nal of CO2 Utilization,2019,33:233-241. DOI: 10.1016/j.jcou.2019.05.016
|
[1] | LIU Jinrui, ZHANG Yan, SUN Shishu, SHI Jianjun, SUN Tianyi, SHI Zaifeng. Advances in photoelectrocatalysis and artificial photosynthesis for the reduction of CO2[J]. Acta Materiae Compositae Sinica, 2024, 41(10): 5183-5201. DOI: 10.13801/j.cnki.fhclxb.20240204.003 |
[2] | BAO Yan, ZHAO Haihang, GAO Lu, ZHANG Wenbo. Research progress of electrospinning flame retardant nanofiber[J]. Acta Materiae Compositae Sinica, 2024, 41(6): 2801-2814. DOI: 10.13801/j.cnki.fhclxb.20231127.002 |
[3] | LIU Sitong, JIN Dan, SUN Dongming, WANG Jing, WANG Yuan, WANG Yanhui, LI Yixuan. Research progress of preparation of Janus micro/nano fibers prepared by electrospinning[J]. Acta Materiae Compositae Sinica, 2024, 41(5): 2321-2332. DOI: 10.13801/j.cnki.fhclxb.20231011.001 |
[4] | MA Chaoge, FANG Guoli, TIAN Jing, ZHANG Gang, YAN Xianghui. Effect of Bi/Cl atomic ratio on the photocatalytic activities of TiO2/BixOyClz composites[J]. Acta Materiae Compositae Sinica. |
[5] | HUANG Xing, ZHU Wenqiang, LI Zhenzhen. Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1841-1856. DOI: 10.13801/j.cnki.fhclxb.20221019.001 |
[6] | YU Xiang, ZHANG Xueyin, LI Ruyang, ZHAO Yahao, LU Xiaolong. Preparation and photocatalytic properties of TiO2/electrospinning PAN-based carbon composite material[J]. Acta Materiae Compositae Sinica, 2020, 37(12): 3177-3183. DOI: 10.13801/j.cnki.fhclxb.20200429.001 |
[7] | WANG Cuie, LIU Xinhua, WAN Peng, ZHANG Guangzhi. Toward a high-activity photocatalyst via controllable synthesis of nano Ag-carbon nanotube-mixed crystal TiO2 composite fibers[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2304-2311. DOI: 10.13801/j.cnki.fhclxb.20151223.001 |
[8] | SONG Chao, DONG Xiangting, WANG Jinxian, LIU Guixia. Synthesis and formation mechanism of NiO ZnTiO3 TiO2 coaxial trilayered nanocables by electrospinning[J]. Acta Materiae Compositae Sinica, 2012, 29(1): 122-128. |
[9] | CHEN Yingsheng, CHEN Zhen, CHEN Riyao, ZHENG Xi, CHEN Xiao. Preparation and photocatalytic properties of NiO-TiO2 coaxial nanofibers[J]. Acta Materiae Compositae Sinica, 2011, 28(2): 36-41. |
[10] | Preparation and characterization of TiO2/SiO2 composite hollow nanof ibres via an electrospinning technique[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 138-143. |
1. |
邓玉婷,林金池,于秀明,朱文韬,杨金辉,谢水波. 新型层状BiOF光催化剂的制备及其应用研究进展. 复合材料学报. 2024(10): 5165-5182 .
![]() |