Volume 40 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
HUANG Xing, ZHU Wenqiang, LI Zhenzhen. Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1841-1856. doi: 10.13801/j.cnki.fhclxb.20221019.001
Citation: HUANG Xing, ZHU Wenqiang, LI Zhenzhen. Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 1841-1856. doi: 10.13801/j.cnki.fhclxb.20221019.001

Research progress of photocatalytic CO2 reduction based on CsPbBr3 perovskite

doi: 10.13801/j.cnki.fhclxb.20221019.001
Funds:  National Natural Science Foundation of China (52102247); Natural Science Foundation of Hebei Province in China (F2022209010); Talent Foundation of Tangshan (A202110039); Science and Technology Project of Tangshan City (21130207C)
  • Received Date: 2022-07-29
  • Accepted Date: 2022-10-11
  • Rev Recd Date: 2022-09-25
  • Available Online: 2022-10-19
  • Publish Date: 2023-04-15
  • Exploring green development and solving the energy crisis has become a trend of commercial development in recent years. Metal halide perovskites have attracted great attentions due to their unique photocatalytic properties. Among them, CsPbBr3 perovskite has high photocatalytic activity and excellent stability, and has developed rapidly in photocatalytic CO2 reduction. Under the trend of energy development, reducing carbon emissions and catalytic reduction of CO2 as fuels are research hotspots and main approaches. However, the poor CO2 adsorption capacity, severe charge recombination, and low charge efficiency of pure CsPbBr3 seriously hinder the commercialization of perovskite photocatalysis. In order to solve a series of problems in photocatalysis of pure CsPbBr3 materials, surface modification the of CsPbBr3 perovskite or construct on of multicomponent composites is currently the most economical and promising solution. In this review, we systematically review the latest research on photocatalytic CO2 reduction of CsPbBr3 perovskites and their composites, discuss the photocatalytic reaction mechanism of CsPbBr3 perovskites, and then propose obstacles to development. Finally, we expect this review to provide new exploration directions for building more stable, efficient and sustainable photocatalysts for CO2 emission reduction.

     

  • loading
  • [1]
    DONG F, HUA Y, YU B. Peak carbon emissions in China: Status, key factors and countermeasures—A literature review[J]. Sustainability,2018,10(8):2895. doi: 10.3390/su10082895
    [2]
    ZHU J F, XU X, ZHU Z, et al. A wind-light-fire co-generation strategy considering dual carbon targets and emission costs[J]. Journal of Physics: Conference Series,2021,2030:012078. doi: 10.1088/1742-6596/2030/1/012078
    [3]
    HUANG R, ZHANG S, WANG P. Key areas and pathways for carbon emissions reduction in Beijing for the “Dual Carbon” targets[J]. Energy Policy,2022,164:112873. doi: 10.1016/j.enpol.2022.112873
    [4]
    CHEN L, MSIGWA G, YANG M, et al. Strategies to achieve a carbon neutral society: A review[J]. Environmental Chemistry Letters,2022,20:2277-2310. doi: 10.1007/s10311-022-01435-8
    [5]
    CHEN J M. Carbon neutrality: Toward a sustainable future[J]. The Innovation,2021,2(3):100127. doi: 10.1016/j.xinn.2021.100127
    [6]
    ABZIEHER T. Best research-cell efficiency chart[EB/OL]. (2021-12-23) [2022-07-29]. https://www.nrel.gov/pv/cell-efficiency.html.
    [7]
    SCHANZE K S, KAMAT P V, YANG P, et al. Progress in perovskite photocatalysis[J]. ACS Energy Letters,2020,5(8):2602-2604. doi: 10.1021/acsenergylett.0c01480
    [8]
    PARK S, CHANG W J, LEE C W, et al. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution[J]. Nature Energy,2017,2:16185. doi: 10.1038/nenergy.2016.185
    [9]
    LIU D, SHAO Z, LI C, et al. Structural properties and stability of inorganic CsPbI3 perovskites[J]. Small Structures,2021,2(3):2000089. doi: 10.1002/sstr.202000089
    [10]
    穆延飞. 卤化钙钛矿基高效催化剂的可控制备及其光催化CO2还原性能研究[D]. 天津: 天津理工大学, 2021.

    MU Yanfei. Controlled preparation of halide perovskite based catalysts and their photocatalytic performances for CO2 reduction[D]. Tianjin: Tianjin University of Technology, 2021(in Chinese).
    [11]
    HUANG H, PRADHAN B, HOFKENS J, et al. Solar-driven metal halide perovskite photocatalysis: Design, stability, and performance[J]. ACS Energy Letters,2020,5(4):1107-1123. doi: 10.1021/acsenergylett.0c00058
    [12]
    XU Y F, YANG M Z, CHEN B X, et al. A CsPbBr3 perovskite quantum dot/graphene oxide composite for photocatalytic CO2 reduction[J]. Journal of the American Chemical Society,2017,139(16):5660-5663. doi: 10.1021/jacs.7b00489
    [13]
    LIANG J, ZHAO P Y, WANG C X, et al. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells with exceptional efficiency and stability[J]. Journal of the American Chemical Society,2017,139(40):14009-14012. doi: 10.1021/jacs.7b07949
    [14]
    LI C, LU X G, DING W Z, et al. Formability of ABX3 (X= F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B: Structural Science,2008,64(6):702-707. doi: 10.1107/S0108768108032734
    [15]
    KIESLICH G, SUN S, CHEETHAM A K. Solid-state principles applied to organic-inorganic perovskites: New tricks for an old dog[J]. Chemical Science,2014,5(12):4712-4715. doi: 10.1039/C4SC02211D
    [16]
    BARTEL C J, SUTTON C, GOLDSMITH B R, et al. New tolerance factor to predict the stability of perovskite oxides and halides[J]. Science Advances,2019,5(2):eaav0693. doi: 10.1126/sciadv.aav0693
    [17]
    STOUMPOS C C, MALLIAKAS C D, PETERS J A, et al. Crystal growth of the perovskite semiconductor CsPbBr3: A new material for high-energy radiation detection[J]. Crystal Growth Design,2013,13(7):2722-2727. doi: 10.1021/cg400645t
    [18]
    BERTOLOTTI F, PROTESESCU L, KOVALENKO M V, et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals[J]. ACS Nano,2017,11(4):3819-3831. doi: 10.1021/acsnano.7b00017
    [19]
    JU M G, DAI J, MA L, et al. Lead-free mixed tin and germanium perovskites for photovoltaic application[J]. Journal of the American Chemical Society,2017,139(23):8038-8043. doi: 10.1021/jacs.7b04219
    [20]
    WEI Y, CHENG Z Y, LIN J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs[J]. Chemical Society Reviews,2019,48(1):310-350. doi: 10.1039/C8CS00740C
    [21]
    TUREDI B, LEE K J, DURSUN I, et al. Water-induced dimensionality reduction in metal-halide perovskites[J]. The Journal of Physical Chemistry C,2018,122(25):14128-14134. doi: 10.1021/acs.jpcc.8b01343
    [22]
    BULYK L I, GAMERNYK R, CHORNODOLSKYY J, et al. Influence of the degradation processes on luminescent and photoelectrical properties of CsPbBr3 single crystals[J]. Journal of Alloys Compounds,2021,884:161023. doi: 10.1016/j.jallcom.2021.161023
    [23]
    SHRESTHA S, TSAI H, YOHO M, et al. Role of the metal-semiconductor interface in halide perovskite devices for radiation photon counting[J]. ACS Applied Materials Interfaces,2020,12(40):45533-45540. doi: 10.1021/acsami.0c11805
    [24]
    ZHANG Z J, ZHU Y M, WANG W L, et al. Aqueous solution growth of millimeter-sized nongreen-luminescent wide bandgap Cs4PbBr6 bulk crystal[J]. Crystal Growth Design,2018,18(11):6393-6398. doi: 10.1021/acs.cgd.8b00817
    [25]
    SHEN W, RUAN L F, SHEN Z T, et al. Reversible light-mediated compositional and structural transitions between CsPbBr3 and CsPb2Br5 nanosheets[J]. Chemical Communications,2018,54(22):2804-2807. doi: 10.1039/C8CC00139A
    [26]
    YIN J, YANG H Z, SONG K P, et al. Point defects and green emission in zero-dimensional perovskites[J]. The Journal of Physical Chemistry Letters,2018,9(18):5490-5495. doi: 10.1021/acs.jpclett.8b02477
    [27]
    XIANG Q J, CHENG B, YU J G. Graphene-based photocatalysts for solar-fuel generation[J]. Angewandte Chemie International Edition,2015,54(39):11350-11366. doi: 10.1002/anie.201411096
    [28]
    YAASHIKAA P, KUMAR P S, VARJANI S J, et al. A review on photochemical, biochemical and electrochemical transformation of CO2 into value-added products[J]. Journal of CO2 Utilization,2019,33:131-147. doi: 10.1016/j.jcou.2019.05.017
    [29]
    KUMAR N, RANI J, KURCHANIA R. Advancement in CsPbBr3 inorganic perovskite solar cells: Fabrication, efficiency and stability[J]. Solar Energy,2021,221:197-205. doi: 10.1016/j.solener.2021.04.042
    [30]
    QIAN J Y, XU B, TIAN W J. A comprehensive theoretical study of halide perovskites ABX3[J]. Organic Electronics,2016,37:61-73. doi: 10.1016/j.orgel.2016.05.046
    [31]
    PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut[J]. Nano Letters,2015,15(6):3692-3696. doi: 10.1021/nl5048779
    [32]
    KAMAT P V, KUNO M. Halide ion migration in perovskite nanocrystals and nanostructures[J]. Accounts of Chemical Research,2021,54(3):520-531. doi: 10.1021/acs.accounts.0c00749
    [33]
    CHEN C, FU Q Y, GUO P J, et al. Ionic transport characteristics of large-size CsPbBr3 single crystals[J]. Materials Research Express,2019,6(11):115808. doi: 10.1088/2053-1591/ab4d79
    [34]
    ZHANG B B, WANG F B, ZHANG H J, et al. Defect proliferation in CsPbBr3 crystal induced by ion migration[J]. Applied Physics Letters,2020,116(6):063505. doi: 10.1063/1.5134108
    [35]
    KOH T M, FU K W, FANG Y, et al. Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells[J]. The Journal of Physical Chemistry C,2014,118(30):16458-16462. doi: 10.1021/jp411112k
    [36]
    ULLAH S, WANG J, YANG P, et al. All-inorganic CsPbBr3 perovskite: A promising choice for photovoltaics[J]. Materials Advances,2021,2(2):646-683. doi: 10.1039/D0MA00866D
    [37]
    ZHANG X Y, PANG G T, XING G C, et al. Temperature dependent optical characteristics of all-inorganic CsPbBr3 nanocrystals film[J]. Materials Today Physics,2020,15:100259. doi: 10.1016/j.mtphys.2020.100259
    [38]
    CHEN J S, LIU D Z, AL-MARRI M J, et al. Photo-stability of CsPbBr3 perovskite quantum dots for optoelectronic application[J]. Science China Materials,2016,59(9):719-727. doi: 10.1007/s40843-016-5123-1
    [39]
    SUN Y F, ZHANG H D, ZHU K, et al. Research on the influence of polar solvents on CsPbBr3 perovskite QDs[J]. RSC Advances,2021,11(44):27333-27337. doi: 10.1039/D1RA04485K
    [40]
    LI J H, XU L M, WANG T, et al. 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control[J]. Advanced Materials,2017,29(5):1603885. doi: 10.1002/adma.201603885
    [41]
    RAVI V K, SANTRA P K, JOSHI N, et al. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes[J]. The Journal of Physical Chemistry Letters,2017,8(20):4988-4994. doi: 10.1021/acs.jpclett.7b02192
    [42]
    YAN D D, SHI T C, ZANG Z G, et al. Ultrastable CsPbBr3 perovskite quantum dot and their enhanced amplified spontaneous emission by surface ligand modification[J]. Small,2019,15(23):1901173.
    [43]
    ZHONG G H, LIU D X, ZHANG J Y. The application of ZIF-67 and its derivatives: Adsorption, separation, electrochemistry and catalysts[J]. Journal of Materials Chemistry A,2018,6(5):1887-1899. doi: 10.1039/C7TA08268A
    [44]
    ZHANG H F, ZHAO M, LIN Y S. Stability of ZIF-8 in water under ambient conditions[J]. Microporous Mesoporous Materials,2019,279:201-210. doi: 10.1016/j.micromeso.2018.12.035
    [45]
    KONG Z C, LIAO J F, DONG Y J, et al. Core@shell CsPbBr3@zeolitic imidazolate framework nanocomposite for efficient photocatalytic CO2 reduction[J]. ACS Energy Letters,2018,3(11):2656-2662. doi: 10.1021/acsenergylett.8b01658
    [46]
    KONG Z C, ZHANG H H, LIAO J F, et al. Immobilizing Re(CO)3Br(dcbpy) complex on CsPbBr3 nanocrystal for boosted charge separation and photocatalytic CO2 reduction[J]. Solar RRL,2020,4(1):1900365. doi: 10.1002/solr.201900365
    [47]
    SU K, DONG G X, ZHANG W, et al. In situ coating CsPbBr3 nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO2 reduction[J]. ACS Applied Materials Interfaces,2020,12(45):50464-50471. doi: 10.1021/acsami.0c14826
    [48]
    WANG J C, LI N Y, IDRIS A M, et al. Surface defect engineering of CsPbBr3 nanocrystals for high efficient photocatalytic CO2 reduction[J]. Solar RRL,2021,5(7):2100154. doi: 10.1002/solr.202100154
    [49]
    CHENG J L, MU Y F, WU L Y, et al. Acetate-assistant efficient cation-exchange of halide perovskite nanocrystals to boost the photocatalytic CO2 reduction[J]. Nano Research,2022,15:1845-1852. doi: 10.1007/s12274-021-3775-3
    [50]
    JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials,2014,13(9):897-903. doi: 10.1038/nmat4014
    [51]
    CHEN Y X, XU Y F, WANG X D, et al. Solvent selection and Pt decoration towards enhanced photocatalytic CO2 reduction over CsPbBr3 perovskite single crystals[J]. Sustainable Energy Fuels,2020,4(5):2249-2255. doi: 10.1039/C9SE01218D
    [52]
    YOU S Q, GUO S H, ZHAO X, et al. All-inorganic perovskite/graphitic carbon nitride composites for CO2 photoreduction into C1 compounds under low concentrations of CO2[J]. Dalton Transactions,2019,48(37):14115-14121. doi: 10.1039/C9DT02468A
    [53]
    CHEN Q, LAN X F, MA Y C, et al. Boosting CsPbBr3-driven superior and long-term photocatalytic CO2 reduction under pure water medium: Synergy effects of multifunctional melamine foam and graphitic carbon nitride (g-C3N4)[J]. Solar RRL,2021,5(7):2100186. doi: 10.1002/solr.202100186
    [54]
    ZHANG Z J, SHU M Y, JIANG Y, et al. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction[J]. Chemical Engineering Journal,2021,414:128889. doi: 10.1016/j.cej.2021.128889
    [55]
    KUMAR S, REGUE M, ISAACS M A, et al. All-inorganic CsPbBr3 nanocrystals: Gram-scale mechanochemical synthesis and selective photocatalytic CO2 reduction to methane[J]. ACS Applied Energy Materials,2020,3(5):4509-4522. doi: 10.1021/acsaem.0c00195
    [56]
    LI L J, ZHANG Z H. In-situ fabrication of Cu doped dual-phase CsPbBr3-Cs4PbBr6 inorganic perovskite nanocomposites for efficient and selective photocatalytic CO2 reduction[J]. Chemical Engineering Journal,2022,434:134811. doi: 10.1016/j.cej.2022.134811
    [57]
    THOMAS N, MATHEW S, NAIR K M, et al. 2D MoS2: Structure, mechanisms, and photocatalytic applications[J]. Materials Today Sustainability,2021,13:100073. doi: 10.1016/j.mtsust.2021.100073
    [58]
    WANG Z C, LIU J H, CHEN W. Plasmonic Ag/AgBr nanohybrid: Synergistic effect of SPR with photographic sensitivity for enhanced photocatalytic activity and stability[J]. Dalton Transactions,2012,41(16):4866-4870. doi: 10.1039/c2dt12089e
    [59]
    ZHANG Z H, ZHANG L B, HEDHILI M N, et al. Plasmonic gold nanocrystals coupled with photonic crystal seamlessly on TiO2 nanotube photoelectrodes for efficient visible light photoelectrochemical water splitting[J]. Nano Letters,2013,13(1):14-20. doi: 10.1021/nl3029202
    [60]
    LIAO J F, CAI Y T, LI J Y, et al. Plasmonic CsPbBr3-Au nanocomposite for excitation wavelength dependent photocatalytic CO2 reduction[J]. Journal of Energy Chemistry,2021,53:309-315. doi: 10.1016/j.jechem.2020.04.017
    [61]
    TANG R, SUN H, ZHANG Z, et al. Incorporating plasmonic Au-nanoparticles into three-dimensionally ordered macroporous perovskite frameworks for efficient photocatalytic CO2 reduction[J]. Chemical Engineering Journal,2022,429:132137. doi: 10.1016/j.cej.2021.132137
    [62]
    TANG C, CHEN C Y, XU W W, et al. Design of doped cesium lead halide perovskite as a photo-catalytic CO2 reduction catalyst[J]. Journal of Materials Chemistry A,2019,7(12):6911-6919. doi: 10.1039/C9TA00550A
    [63]
    SHYAMAL S, DUTTA S K, PRADHAN N. Doping iron in CsPbBr3 perovskite nanocrystals for efficient and product selective CO2 reduction[J]. The Journal of Physical Chemistry Letters,2019,10(24):7965-7969. doi: 10.1021/acs.jpclett.9b03176
    [64]
    CHENG R, DEBROYE E, HOFKENS J, et al. Efficient photocatalytic CO2 reduction with MIL-100 (Fe)-CsPbBr3 composites[J]. Catalysts,2020,10(11):1352. doi: 10.3390/catal10111352
    [65]
    DONG G X, ZHANG W, MU Y F, et al. A halide perovskite as a catalyst to simultaneously achieve efficient photocatalytic CO2 reduction and methanol oxidation[J]. Chemical Communications,2020,56(34):4664-4667. doi: 10.1039/D0CC01176B
    [66]
    XI Y M, ZHANG X W, SHEN Y, et al. Aspect ratio dependent photocatalytic enhancement of CsPbBr3 in CO2 reduction with two-dimensional metal organic framework as a cocatalyst[J]. Applied Catalysis B: Environmental,2021,297:120411. doi: 10.1016/j.apcatb.2021.120411
    [67]
    YANG L, ZENG X F, WANG W C, et al. Recent progress in MOF-derived, heteroatom-doped porous carbons as highly efficient electrocatalysts for oxygen reduction reaction in fuel cells[J]. Advanced Functional Materials,2018,28(7):1704537. doi: 10.1002/adfm.201704537
    [68]
    DING M, FLAIG R W, JIANG H L, et al. Carbon capture and conversion using metal-organic frameworks and MOF-based materials[J]. Chemical Society Reviews,2019,48(10):2783-2828. doi: 10.1039/C8CS00829A
    [69]
    LI N, ZHAI X P, YAN W K, et al. Boosting cascade electron transfer for highly efficient CO2 photoreduction[J]. Solar RRL,2021,5(11):2100558. doi: 10.1002/solr.202100558
    [70]
    WANG Q L, TAO L M, JIANG X X, et al. Graphene oxide wrapped CH3NH3PbBr3 perovskite quantum dots hybrid for photoelectrochemical CO2 reduction in organic solvents[J]. Applied Surface Science,2019,465:607-613. doi: 10.1016/j.apsusc.2018.09.215
    [71]
    CHEN Y H, YE J K, CHANG Y J, et al. Mechanisms behind photocatalytic CO2 reduction by CsPbBr3 perovskite-graphene-based nanoheterostructures[J]. Applied Catalysis B: Environmental,2021,284:119751. doi: 10.1016/j.apcatb.2020.119751
    [72]
    PARZINGER E, MILLER B, BLASCHKE B, et al. Photocatalytic stability of single-and few-layer MoS2[J]. ACS Nano,2015,9(11):11302-11309. doi: 10.1021/acsnano.5b04979
    [73]
    XIA D D, GONG F, PEI X, et al. Molybdenum and tungsten disulfides-based nanocomposite films for energy storage and conversion: A review[J]. Chemical Engineering Journal,2018,348:908-928. doi: 10.1016/j.cej.2018.04.207
    [74]
    SINGH R, GIRI A, PAL M, et al. Perovskite solar cells with an MoS2 electron transport layer[J]. Journal of Materials Chemistry A,2019,7(12):7151-7158. doi: 10.1039/C8TA12254G
    [75]
    WANG X D, HE J, MAO L, et al. CsPbBr3 perovskite nanocrystals anchoring on monolayer MoS2 nanosheets for efficient photocatalytic CO2 reduction[J]. Chemical Engineering Journal,2021,416:128077. doi: 10.1016/j.cej.2020.128077
    [76]
    MISHRA R, BERA S, CHATTERJEE R, et al. A review on Z/S-scheme heterojunction for photocatalytic applications based on metal halide perovskite materials[J]. Applied Surface Science Advances,2022,9:100241. doi: 10.1016/j.apsadv.2022.100241
    [77]
    XU F Y, MENG K, CHENG B, et al. Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction[J]. Nature Communications,2020,11(1):1-9. doi: 10.1038/s41467-019-13993-7
    [78]
    JIANG Y, CHEN H Y, LI J Y, et al. Z-scheme 2D/2D heterojunction of CsPbBr3/Bi2WO6 for improved photocatalytic CO2 reduction[J]. Advanced Functional Materials,2020,30(50):2004293. doi: 10.1002/adfm.202004293
    [79]
    JIANG Y, LIAO J F, CHEN H Y, et al. All-solid-state Z-scheme α-Fe2O3/amine-RGO/CsPbBr3 hybrids for visible-light-driven photocatalytic CO2 reduction[J]. Chemistry,2020,6(3):766-780. doi: 10.1016/j.chempr.2020.01.005
    [80]
    DONG Y J, JIANG Y, LIAO J F, et al. Construction of a ternary WO3/CsPbBr3/ZIF-67 heterostructure for enhanced photocatalytic carbon dioxide reduction[J]. Science China Materials,2022,65:1550-1559. doi: 10.1007/s40843-021-1962-9
    [81]
    LEI J C, ZHANG X, ZHOU Z. Recent advances in MXene: Preparation, properties, and applications[J]. Frontiers of Physics,2015,10(3):276-286. doi: 10.1007/s11467-015-0493-x
    [82]
    PAN A Z, MA X Q, HUANG S Y, et al. CsPbBr3 perovskite nanocrystal grown on MXene nanosheets for enhanced photoelectric detection and photocatalytic CO2 reduction[J]. The Journal of Physical Chemistry Letters,2019,10(21):6590-6597. doi: 10.1021/acs.jpclett.9b02605
    [83]
    LIU H, NEAL A T, ZHU Z, et al. Phosphorene: An unexplored 2D semiconductor with a high hole mobility[J]. ACS Nano,2014,8(4):4033-4041. doi: 10.1021/nn501226z
    [84]
    WANG X D, HE J, LI J Y, et al. Immobilizing perovskite CsPbBr3 nanocrystals on black phosphorus nanosheets for boosting charge separation and photocatalytic CO2 reduction[J]. Applied Catalysis B: Environmental,2020,277:119230. doi: 10.1016/j.apcatb.2020.119230
    [85]
    ZHAO Y T, WANG H Y, HUANG H, et al. Surface coordination of black phosphorus for robust air and water stability[J]. Angewandte Chemie,2016,128(16):5087-5091. doi: 10.1002/ange.201512038
    [86]
    GONG Y Q, SHEN J H, ZHU Y H, et al. Tailoring charge transfer in perovskite quantum dots/black phosphorus nanosheets photocatalyst via aromatic molecules[J]. Applied Surface Science,2021,545:149012. doi: 10.1016/j.apsusc.2021.149012
    [87]
    ZHANG Y Q, DONG N N, TAO H C, et al. Exfoliation of stable 2D black phosphorus for device fabrication[J]. Chemistry of Materials,2017,29(15):6445-6456. doi: 10.1021/acs.chemmater.7b01991
    [88]
    CHOUDHARY R B, ANSARI S, PURTY B. Robust electrochemical performance of polypyrrole (PPy) and polyindole (PIn) based hybrid electrode materials for supercapacitor application: A review[J]. Journal of Energy Storage,2020,29:101302. doi: 10.1016/j.est.2020.101302
    [89]
    DANG M T, HIRSCH L, WANTZ G. P3 HT: PCBM, best seller in polymer photovoltaic research[J]. Advanced Materials, 2011, 23(31): 3597-3602.
    [90]
    ZHANG Z J, LI L, LIU L H, et al. Water-stable and photoelectrochemically active CsPbBr3/polyaniline composite by a photocatalytic polymerization process[J]. The Journal of Physical Chemistry C,2020,124(40):22228-22234. doi: 10.1021/acs.jpcc.0c05774
    [91]
    ZHANG Z J, LIU L H, HUANG H R, et al. Encapsulation of CsPbBr3 perovskite quantum dots into PPy conducting polymer: Exceptional water stability and enhanced charge transport property[J]. Applied Surface Science,2020,526:146735. doi: 10.1016/j.apsusc.2020.146735
    [92]
    BAI X J, SUN C P, WU S L, et al. Enhancement of photocatalytic performance via a P3 HT-g-C3N4 heterojunction[J]. Journal of Materials Chemistry A,2015,3(6):2741-2747. doi: 10.1039/C4TA04779F
    [93]
    LI L, ZHANG Z J, DING C, et al. Boosting charge separation and photocatalytic CO2 reduction of CsPbBr3 perovskite quantum dots by hybridizing with P3 HT[J]. Chemical Engineering Journal,2021,419:129543. doi: 10.1016/j.cej.2021.129543
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (1357) PDF downloads(130) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return