Citation: | YANG Gang, SHEN Jian, ZHOU Zhengyang, et al. "Double-Double" layup thermoplastic laminates and their application potential in automotive structures[J]. Acta Materiae Compositae Sinica, 2024, 41(9): 4892-4904. doi: 10.13801/j.cnki.fhclxb.20240801.001 |
[1] |
OZKAN D, GOK M S, KARAOGLANLI A C. Carbon fiber reinforced polymer (CFRP) composite materials, their characteristic properties, industrial application areas and their machinability[J]. Engineering Design Applications III: Structures, Materials and Processes, 2020, 14: 235-253.
|
[2] |
WAZEER A, DAS A, ABEYKOON C, et al. Composites for electric vehicles and automotive sector: A review[J]. Green Energy and Intelligent Transportation, 2023, 2(1): 100043. doi: 10.1016/j.geits.2022.100043
|
[3] |
ZHANG W, XU J. Advanced lightweight materials for automobiles: A review[J]. Materials & Design, 2022, 221: 110994.
|
[4] |
HEGDE S, SHENOY B S, CHETHAN K N. Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance[J]. Materials Today: Proceedings, 2019, 19: 658-662. doi: 10.1016/j.matpr.2019.07.749
|
[5] |
ALSHAMMARI B A, ALSUHYBANI M S, ALMUSHAIKEH A M, et al. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites[J]. Polymers, 2021, 13(15): 2474. doi: 10.3390/polym13152474
|
[6] |
SHAMA R N, SIMHA T G A, RAO K P, et al. Carbon composites are becoming competitive and cost effective[R/OL]. [2024-08-01]. https://www.infosys.com/engineering-services/white-papers/documents/carbon-composites-cost-effective.pdf.
|
[7] |
TSAI S W, SHARMA N, ARTEIRO A, et al. Composite double-double and grid/skin structures [M]. Redwood City: Stanford University Press, 2019: 14-23.
|
[8] |
VERMES B, TSAI S W, RICCIO A, et al. Application of the Tsai’s modulus and double-double concepts to the definition of a new affordable design approach for composite laminates[J]. Composite Structures, 2021, 259: 113246. doi: 10.1016/j.compstruct.2020.113246
|
[9] |
VAIDYA U K, CHAWLA K. Processing of fibre reinforced thermoplastic composites[J]. International Materials Reviews, 2008, 53(4): 185-218. doi: 10.1179/174328008X325223
|
[10] |
VERMES B, TSAI S W, MASSARD T, et al. Design of laminates by a novel “double–double” layup[J]. Thin-Walled Structures, 2021, 165: 107954. doi: 10.1016/j.tws.2021.107954
|
[11] |
NIELSEN M W D, BUTLER R, RHEAD A T. Minimum mass laminate design for uncertain in-plane loading[J]. Composites Part A: Applied Science and Manufacturing, 2018, 115: 348-359. doi: 10.1016/j.compositesa.2018.09.028
|
[12] |
TSAI S W, MELO J D D, SIHN S, et al. Composite laminates: Theory and practice of analysis, design and automated layup [M]. Standford: Stanford Aeronautics & Astronautics, 2017: 1-3.
|
[13] |
SHRIVASTAVA S, SHARMA N, TSAI S W, et al. D and DD-drop layup optimization of aircraft wing panels under multi-load case design environment[J]. Composite Structures, 2020, 248: 112518. doi: 10.1016/j.compstruct.2020.112518
|
[14] |
FURTADO C, PEREIRA L, TAVARES R P, et al. A methodology to generate design allowables of composite laminates using machine learning[J]. International Journal of Solids and Structures, 2021, 233: 111095. doi: 10.1016/j.ijsolstr.2021.111095
|
[15] |
VIJAYACHANDRAN A, WAAS A. On the use of non traditional stacking to maximize critical buckling loads in flat composite panels[J]. Composite Structures, 2021, 261: 113320. doi: 10.1016/j.compstruct.2020.113320
|
[16] |
ZHAO M, ZHAO Y, WANG A, et al. Investigation of the mode-I delamination behavior of Double-Double laminate carbon fiber reinforced composite[J]. Composites Science and Technology, 2024, 248: 110463. doi: 10.1016/j.compscitech.2024.110463
|
[17] |
STIEVEN M L, FERREIRA D M M G, LEMES A P, et al. Recycling of carbon fiber-reinforced thermoplastic and thermoset composites: A review[J]. Journal of Thermoplastic Composite Materials, 2023, 36(8): 3455-3480. doi: 10.1177/08927057221108912
|
[18] |
YAO S S, JIN F L, RHEE K Y, et al. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review[J]. Composites Part B: Engineering, 2018, 142: 241-250. doi: 10.1016/j.compositesb.2017.12.007
|
[19] |
PENG C Z. Improved interfacial properties of carbon fiber/UHMWPE composites through surface coating on carbon fiber surface[J]. Surface and Interface Analysis, 2018, 50(5): 558-563. doi: 10.1002/sia.6426
|
[20] |
ALMUSHAIKEH A M, ALASWAD S O, ALSUHYBANI M S, et al. Manufacturing of carbon fiber reinforced thermoplastics and its recovery of carbon fiber: A review [J]. Polymer Testing, 2023, 122: 108029.
|
[21] |
LIU J L, MAZELI Z A B, TAY T E, et al. Strength and healing efficiency of helicoidal carbon fiber reinforced thermoplastic laminates[J]. Composites Part A: Applied Science and Manufacturing, 2022, 156: 106903. doi: 10.1016/j.compositesa.2022.106903
|
[22] |
LIU J L, ZHI J, WONG H L, et al. Effect of ply blocking on the high-speed impact performance of thin-ply CFRP laminates[J]. Composites Science and Technology, 2022, 228: 109640. doi: 10.1016/j.compscitech.2022.109640
|
[23] |
LEE J M, LEE C J, KIM B M, et al. Design of prepreg compression molding for manufacturing of CFRTP B-pillar reinforcement with equivalent mechanical properties to existing steel part[J]. International Journal of Precision Engineering and Manufacturing, 2020, 21: 545-556. doi: 10.1007/s12541-019-00265-z
|
[24] |
REIS J P, MOURA M D, SAMBORSKI S. Thermoplastic composites and their promising applications in joining and repair composites structures: A review[J]. Materials, 2020, 13(24): 5832. doi: 10.3390/ma13245832
|
[25] |
BARROETA R J, DUBÉ M, HUBERT P, et al. Repair of thermoplastic composites: An overview [J]. Advanced Manufacturing: Polymer & Composites Science, 2022, 8(2): 68-96.
|
[26] |
IRISARRI F X, BASSIR D H, CARRERE N, et al. Multiobjective stacking sequence optimization for laminated composite structures[J]. Composites Science and Technology, 2009, 69(7-8): 983-990. doi: 10.1016/j.compscitech.2009.01.011
|
[27] |
ASTM Standards. Standard test method for measuring the damage resistance of a fiber-reinforced polymer matrix composite to a drop-weight impact event: D7136/D7136M-20 [S]. West Conshohocken: ASTM International, 2020.
|
[28] |
ZHOU W, HUANG J, LIU D. In situ capture of impact-induced progressive damage and delamination in fiberglass composite laminate with a high-speed optical imaging method[J]. Composite Structures, 2021, 259: 113498. doi: 10.1016/j.compstruct.2020.113498
|
[29] |
LI Y, WANG B, ZHOU L. Study on the effect of delamination defects on the mechanical properties of CFRP composites[J]. Engineering Failure Analysis, 2023, 153: 107576. doi: 10.1016/j.engfailanal.2023.107576
|
[30] |
TSAI S W. Master failure envelopes for composite laminates [M]// TSAI S W, FALZON B G, ARAVAND A. Double-double: Simplifying the design and manufacture of composite laminates. Redwood City: Stanford University Press, 2023: 31-70.
|
[31] |
LIU J L, YANG G, JIANG D Z, et al. Uniaxial tensile strength of open-hole DD laminates [M]// TSAI S W, FALZON B G, ARAVAND A. Double-double: Simplifying the design and manufacture of composite laminates. Redwood City: Stanford University Press, 2023: 291-302.
|
[32] |
MIRAVETE A. Preferred stacking sequences for homogenization [M]// TSAI S W, FALZON B G, ARAVAND A. Double-double: Simplifying the design and manufacture of composite laminates. Redwood City: Stanford University Press, 2023: 95-136.
|
[33] |
TSAI S W. Foundation of Double-Double [M]// TSAI S W, FALZON B G, ARAVAND A. Double-double: Simplifying the design and manufacture of composite laminates. Redwood City: Stanford University Press, 2023: 1-30.
|
[34] |
ASTM Standards. Standard test method for open-hole tensile strength of polymer matrix composite laminates: D5766/D5766M-23 [S]. West Conshohocken: ASTM International, 2023.
|
[35] |
ASTM Standards. Standard test method for flexural properties of unreinforced and reinforced plastics and electrical insulating materials: D790-17 [S]. West Conshohocken: ASTM International, 2017.
|
[36] |
HERAKOVICH C T. On the relationship between engineering properties and delamination of composite materials[J]. Journal of Composite Materials, 1981, 15(4): 336-348. doi: 10.1177/002199838101500404
|
[37] |
CHENG H, ZHANG Z, REN M, et al. Experimental and numerical simulation studies on V-shaped bending of aluminum/CFRP laminates[J]. Materials, 2023, 16(14): 4939. doi: 10.3390/ma16144939
|
[38] |
MICHALOS G, MAKRIS S, PAPAKOSTAS N, et al. Automotive assembly technologies review: Challenges and outlook for a flexible and adaptive approach[J]. CIRP Journal of Manufacturing Science and Technology, 2010, 2(2): 81-91. doi: 10.1016/j.cirpj.2009.12.001
|
[39] |
BORIA S, SCATTINA A, BELINGARDI G. Experimental evaluation of a fully recyclable thermoplastic composite[J]. Composite Structures, 2016, 140: 21-35. doi: 10.1016/j.compstruct.2015.12.049
|