Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003
Citation: ZHANG Yan, MA Zhonglei, LI Zhen, et al. Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6407-6415. doi: 10.13801/j.cnki.fhclxb.20230109.003

Preparation and EMI shielding properties of lightweight and mechanically strong MXene/bacterial cellulose composite aerogels

doi: 10.13801/j.cnki.fhclxb.20230109.003
Funds:  National Natural Science Foundation of China (52273083; 51903145); Key Research and Development Project of Shaanxi Province (2023-YBGY-476); Fundamental Research Funds for the Central Universities (D5000210627)
  • Received Date: 2022-11-30
  • Accepted Date: 2022-12-26
  • Rev Recd Date: 2022-12-24
  • Available Online: 2023-01-10
  • Publish Date: 2023-11-01
  • With the rapid development of highly-integrated and highly-powered 5G communication and wearable electronic devices, the electromagnetic interference and electromagnetic pollution problems caused by electromagnetic waves are becoming increasingly serious. It is urgent to develop lightweight, mechanically strong and environmentally friendly electromagnetic shielding composites. Herein, the lightweight and mechanically strong MXene/bacterial cellulose (BC) composite aerogels with directional porous structures were prepared via the liquid nitrogen directional freezing followed by freeze drying method using biomass BC as matrix and conductive Ti3C2Tx MXene as functional fillers. The effects of Ti3C2Tx MXene mass fraction on the microstructures, conductive and mechanical properties, as well as EMI shielding properties of the composite aerogels were investigated in detail. The results show that the composite aerogels with a Ti3C2Tx MXene mass fraction of 40wt% exhibit a low mass density of 18.3 mg/cm3, as well as the highest electrical conductivity and electromagnetic interference shielding effectiveness (EMI SE) of 459.3 S/cm and 72 dB (at a thickness of 4 mm) in X band with an absorption dominated EMI shielding mechanism. Owing to the abundant hydrogen bonding interactions, the composite aerogels exhibit a high compression strength of 38.3 kPa, which is 116.1% higher than that of pure BC aerogels.

     

  • loading
  • [1]
    YUN T, KIM H, IQBAL A, et al. Electromagnetic shielding of monolayer MXene assemblies[J]. Advanced Materials,2020,32(9):1906769. doi: 10.1002/adma.201906769
    [2]
    ZHANG M, CAO M S, SHU J C, et al. Electromagnetic absorber converting radiation for multifunction[J]. Materials Science and Engineering: R: Reports,2021,145:100627. doi: 10.1016/j.mser.2021.100627
    [3]
    YI P, ZOU H H, YU Y H, et al. MXene-reinforced liquid metal/polymer fibers via interface engineering for wearable multifunctional textiles[J]. ACS Nano,2022,16(9):14490-14502. doi: 10.1021/acsnano.2c04863
    [4]
    DAI Y, WU X Y, LI L L, et al. 3D printing of resilient, lightweight and conductive MXene/reduced graphene oxide architectures for broad­band electromagnetic interference shielding[J]. Journal of Materials Chemistry A,2022,10(21):11375-11385. doi: 10.1039/D2TA01388F
    [5]
    李姝颖, 姜玉莹, 戴会娟, 等. 面向5G毫米波的绿色多性能电磁屏蔽材料[J]. 复合材料学报, 2023, 40(5):2688-2698.

    LI Shuying, JIANG Yuying, DAI Huijuan, et al. Green multi-performances electromagnetic shielding material for 5G mm-wave[J]. Acta Materiae Compositae Sinica,2023,40(5):2688-2698(in Chinese).
    [6]
    WANG T, YU W C, SUN W J, et al. Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding[J]. Composites Science and Technology,2020,200:108446. doi: 10.1016/j.compscitech.2020.108446
    [7]
    张梦辉, 马忠雷, 马建中, 等. 聚合物基电磁屏蔽复合材料的结构设计与性能研究进展[J]. 复合材料学报, 2021, 38(5):1358-1370. doi: 10.13801/j.cnki.fhclxb.20201208.003

    ZHANG Menghui, MA Zhonglei, MA Jianzhong, et al. Research progress of structure design and performance of polymer-based electromagnetic shielding composites[J]. Acta Materiae Compositae Sinica,2021,38(5):1358-1370(in Chinese). doi: 10.13801/j.cnki.fhclxb.20201208.003
    [8]
    CHEN J L, SHEN B, JIA X C, et al. Lightweight and compressible anisotropic honeycomb-like graphene composites for highly tunable electromagnetic shielding with multiple functions[J]. Materials Today Physics,2022,24:100695. doi: 10.1016/j.mtphys.2022.100695
    [9]
    XU J A, ZHANG X A, ZHAO Z B, et al. Lightweight, fire-retardant, and anti-compressed honeycombed-like carbon aerogels for thermal management and high-efficiency electromagnetic absorbing properties[J]. Small,2021,17(33):2102032. doi: 10.1002/smll.202102032
    [10]
    LIU J, ZHANG H B, SUN R H, et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding[J]. Advanced Materials,2017,29(38):1702367. doi: 10.1002/adma.201702367
    [11]
    HU P Y, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano,2020,14(1):688-697.
    [12]
    LIU J, ZHANG H B, XIE X, et al. Multifunctional, superelastic, and lightweight MXene/polyimide aerogels[J]. Small,2018,14(45):1802479. doi: 10.1002/smll.201802479
    [13]
    WANG L, SONG P, LIN C T, et al. 3D shapeable, superior electrically conductive cellulose nanofibers/Ti3C2Tx MXene aerogels/epoxy nanocomposites for promising EMI shielding[J]. Research,2020,2020:4093732.
    [14]
    CAO W T, CHEN F F, ZHU Y J, et al. Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties[J]. ACS Nano,2018,12(5):4583-4593. doi: 10.1021/acsnano.8b00997
    [15]
    LIANG C B, RUAN K P, ZHANG Y L, et al. Multifunctional flexible electromagnetic interference shielding silver nanowires/cellulose films with excellent thermal management and joule heating performances[J]. ACS Applied Materials & Interfaces,2020,12(15):18023-18031.
    [16]
    MA Z L, XIANG X L, SHAO L A, et al. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing[J]. Angewandte Chemie International Edition,2022,61(15):202200705.
    [17]
    SONG J W, CHEN C J, YANG Z, et al. Highly compressible, anisotropic aerogel with aligned cellulose nanofibers[J]. ACS Nano,2018,12(1):140-147. doi: 10.1021/acsnano.7b04246
    [18]
    ZENG Z H, WANG C X, SIQUEIRA G, et al. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance[J]. Advanced Science,2020,7(15):2000979. doi: 10.1002/advs.202000979
    [19]
    MA C, CAO W T, ZHANG W, et al. Wearable, ultrathin and transparent bacterial celluloses/MXene film with Janus structure and excellent mechanical property for electromagnetic interference shielding[J]. Chemical Engineering Journal,2021,403:126438. doi: 10.1016/j.cej.2020.126438
    [20]
    WU Z Y, LI C, LIANG H W, et al. Ultralight, flexible, and fire-resistant carbon nanofiber aerogels from bacterial cellulose[J]. Angewandte Chemie,2013,125(10):2997-3001. doi: 10.1002/ange.201209676
    [21]
    CHEN X, YUAN F S, ZHANG H, et al. Recent approaches and future prospects of bacterial cellulose-based electroconductive materials[J]. Journal of Materials Science,2016,51(12):5573-5588. doi: 10.1007/s10853-016-9899-2
    [22]
    李桢, 马忠雷, 康松磊, 等. 细菌纤维素@Fe3O4/AgNWs复合薄膜的制备与电磁屏蔽性能[J]. 精细化工, 2022, 39(6):1162-1169, 1211.

    LI Zhen, MA Zhonglei, KANG Songlei, et al. Preparation and electromagnetic shielding properties of bacterial cellulose@Fe3O4/AgNWs composite films[J]. Fine Chemicals,2022,39(6):1162-1169, 1211(in Chinese).
    [23]
    MA Z L, KANG S L, MA J Z, et al. Ultraflexible and mechanically strong double-layered aramid nanofiber-Ti3C2Tx MXene/silver nanowire nanocomposite papers for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(7):8368-8382. doi: 10.1021/acsnano.0c02401
    [24]
    ZHAO B, MA Z L, SUN Y Y, et al. Flexible and robust Ti3C2Tx/(ANF@FeNi) composite films with outstanding electromagnetic interference shielding and electrothermal conversion performances[J]. Small Structures,2022,3(10):2200162. doi: 10.1002/sstr.202200162
    [25]
    CHEN W, LIU L X, ZHANG H B, et al. Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding[J]. ACS Nano,2020,14(12):16643-16653. doi: 10.1021/acsnano.0c01635
    [26]
    李素琴, 李喜民, 刘刚. 飞机用电磁屏蔽橡胶材料[J]. 化工新型材料, 2014, 42(1):177-178.

    LI Suqin, LI Ximin, LIU Gang. Study on electromanetic shielding rubble materials used in aerospace fields[J]. New Chemical Materials,2014,42(1):177-178(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (461) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return