Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHANG Yanan, HU Xudong, LIU Bingfei. Damage monitoring model of shape memory alloy composites based on strain transfer[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004
Citation: ZHANG Yanan, HU Xudong, LIU Bingfei. Damage monitoring model of shape memory alloy composites based on strain transfer[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6462-6470. doi: 10.13801/j.cnki.fhclxb.20230310.004

Damage monitoring model of shape memory alloy composites based on strain transfer

doi: 10.13801/j.cnki.fhclxb.20230310.004
Funds:  Fundamental Research Funds for the Central Universities of China (3122015C019)
  • Received Date: 2022-12-08
  • Accepted Date: 2023-03-04
  • Rev Recd Date: 2023-02-15
  • Available Online: 2023-03-12
  • Publish Date: 2023-11-01
  • Composite materials have been widely used in architecture, medicine, aerospace and other fields because of their excellent properties, however, the damage monitoring of composite materials has always been one of the difficult problems concerned by experts and scholars at home and abroad. In this paper, shape memory alloy (SMA) was embedded in the composite, and the strain transfer effect of the interface layer was considered. Using the resistance sensing characteristics of SMA, a plastic damage monitoring model of SMA composite based on strain transfer was established, which realizes the real-time monitoring of plastic damage strain of composite materials. Based on the monitoring model, the effects of different material parameters on the average strain transfer rate between SMA and composite were discussed, and the damage monitoring behaviors of SMA under different initial states and temperature conditions were discussed. The results show that decreasing the thickness of the interface layer, increasing the shear modulus of the interface layer and increasing the embedded length of SMA all increase the average strain transfer rate of the interface. The change of SMA resistance and the plastic damage strain of the composite are piecewise linear. This study can provide a theoretical basis for further optimization design and application of SMA composite damage monitoring.


  • loading
  • [1]
    CHANDARANA N, MATTHIEU G, SOUTIS C. Damage detection and monitoring in composite pipes using piezoelectric sensors[C]//9th European Workshop on Structural Health Monitoring. Manchester: NDT. net, 2018: 1-9.
    BENAZZO F, RIGAMONTI D, BETTINI P, et al. Interlaminar fracture of structural fibre/epoxy composites integrating damage sensing and healing[J]. Composites Part B: Engineering,2022,244:110137. doi: 10.1016/j.compositesb.2022.110137
    SENTHILKUMAR M, SREEKANTH T G, MANIKANTA REDDY S. Nondestructive health monitoring techniques for composite materials: A review[J]. Polymers and Polymer Composites,2021,29(5):528-540. doi: 10.1177/0967391120921701
    EL-SABBAGH A, STEUERNAGEL L, ZIEGMANN G. Characterisation of flax polypropylene composites using ultrasonic longitudinal sound wave technique[J]. Compo-sites Part B: Engineering,2013,45(1):1164-1172. doi: 10.1016/j.compositesb.2012.06.010
    FREEMANTLE R J, HANKINSON N, BROTHERHOOD C J. Rapid phased array ultrasonic imaging of large area composite aerospace structures[J]. Insight,2005,47(3):129-132. doi: 10.1784/insi.
    RYU C H, PARK S H, KIM D H, et al. Nondestructive evaluation of hidden multi-delamination in a glass-fiber-reinforced plastic composite using terahertz spectroscopy[J]. Composite Structures,2016,156:338-347. doi: 10.1016/j.compstruct.2015.09.055
    HOSOI A, YAMAGUCHI Y, JU Y, et al. Detection and quantitative evaluation of defects in glass fiber reinforced plastic laminates by microwaves[J]. Composite Structures,2015,128:134-144. doi: 10.1016/j.compstruct.2015.03.050
    KALYANAVALLI V, ABILASHA RAMADHAS T K, SASTIKUMAR D. Long pulse thermography investigations of basalt fiber reinforced composite[J]. NDT & E International,2018,100:84-91.
    邱自学, 姚兴田. 结构中埋入TiNi超弹性丝传感网络的实验研究[J]. 传感器技术, 2001, 20(11):11-13.

    QIU Zixue, YAO Xingtian. Experimental research on sensor network embedded TiNi super-elastic wire in structures[J]. Journal of Transducer Technology,2001,20(11):11-13(in Chinese).
    LYNCH B. Modeling of the stress-strain-resistance behaviour of Ni-Ti and Ni-Ti-Cu shape memory alloys for use in sensorless actuator position control[D]. Ontario: Carleton University, 2013.
    马奎. NiTi形状记忆合金棒的受限回复与加热试验及分析[D]. 广州: 华南理工大学, 2013.

    MA Kui. Tests and analyses of NiTi shape memory alloy bars' restrained recovery and heating[D]. Guangzhou: South China University of Technology, 2013(in Chinese).
    崔迪. 形状记忆合金及其智能混凝土结构研究[D]. 大连: 大连理工大学, 2007.

    CUI Di. Research on shape memory alloy and shape memory alloy restrained intelligent concrete structure[D]. Dalian: Dalian University of Technology, 2007(in Chinese).
    狄生奎, 韩全治, 李慧, 等. SMA在结构健康监测中的应用研究[J]. 低温建筑技术, 2008, 30(4):58-60. doi: 10.3969/j.issn.1001-6864.2008.04.027

    DI Shengkui, HAN Quanzhi, LI Hui, et al. Research on the shape memory alloy applied in structural health monitoring[J]. Low Temperature Architecture Technology,2008, 30(4):58-60(in Chinese). doi: 10.3969/j.issn.1001-6864.2008.04.027
    狄生奎, 花尉攀, 汲生伟, 等. 约束态SMA混凝土梁的裂缝监测及自修复[J]. 建筑材料学报, 2010, 13(2):237-242. doi: 10.3969/j.issn.1007-9629.2010.02.021

    DI Shengkui, HUA Weipan, JI Shengwei, et al. Self-monitoring and self-repairing of crack in concrete beam with constraint super-elastic SMA[J]. Journal of Building Materials,2010,13(2):237-242(in Chinese). doi: 10.3969/j.issn.1007-9629.2010.02.021
    LIU B F, WANG Q F, YIN K, et al. An analytical model for crack monitoring of the shape memory alloy intelligent concrete[J]. Journal of Intelligent Material Systems and Structures,2020,31(1):100-116. doi: 10.1177/1045389X19880010
    张亚楠, 刘亚冬, 刘兵飞. 形状记忆合金在复合材料损伤监测中的应用[J]. 复合材料学报, 2021, 38(4):1177-1191.

    ZHANG Yanan, LIU Yadong, LIU Bingfei. Application of shape memory alloy in damage monitoring of composite materials[J]. Acta Materiae Compositae Sinica,2021,38(4):1177-1191(in Chinese).
    BRINSON L C. One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable[J]. Journal of Intelligent Material Systems and Structures,1993,4(2):229-242. doi: 10.1177/1045389X9300400213
    IKUTA K, TSUKAMOTO M, HIROSE S. Mathematical model and experimental verification of shape memory alloy for designing micro actuator[C]//[1991] Proceedings. IEEE Micro Electro Mechanical Systems. New York: IEEE, 1991: 103-108.
    王花平. 损伤状态下光纤应变传递及其在多层路面的应用[D]. 大连: 大连理工大学, 2015.

    WANG Huaping. Strain transfer of optical fiber under damage conditions and its application in mutil-layered pavements[D]. Dalian: Dalian University of Technology, 2015(in Chinese).
    杨博恒. 形状记忆合金超细丝电阻传感特性试验及理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.

    YANG Boheng. Research on characteristic modeling and resistance sensing control of shape memory alloy actuators[D]. Harbin: Harbin Institute of Technology, 2020(in Chinese).
    WANG Y L, WANG Y S, WAN B L, et al. Strain and damage self-sensing of basalt fiber reinforced polymer laminates fabricated with carbon nanofibers/epoxy composites under tension[J]. Composites Part A: Applied Science and Manufacturing,2018,113:40-52. doi: 10.1016/j.compositesa.2018.07.017
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views (561) PDF downloads(16) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint