Volume 39 Issue 6
Jun.  2022
Turn off MathJax
Article Contents
AN Zejun, CAO Dongfeng, ZHENG Kaidong, et al. Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2974-2986. doi: 10.13801/j.cnki.fhclxb.20210902.005
Citation: AN Zejun, CAO Dongfeng, ZHENG Kaidong, et al. Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2974-2986. doi: 10.13801/j.cnki.fhclxb.20210902.005

Effect of drilling delamination on compressive mechanical behaviour of open-hole laminates

doi: 10.13801/j.cnki.fhclxb.20210902.005
  • Received Date: 2021-05-17
  • Accepted Date: 2021-08-14
  • Rev Recd Date: 2021-07-17
  • Available Online: 2021-09-03
  • Publish Date: 2022-06-01
  • The delamination damage has significant influence on the bearing capacity and failure mode of open-hole laminates. By combining experiment and simulation, the compression bearing capacity and failure mode of composite open-hole laminates with single prefabricated laminated defects, two laminated coupling defects on the same side and double laminated coupling defects on the different side were studied. Through the embedded polytetrafluoroethylene (PTFE) membrane, the open-hole laminate containing single prefabricated delamination defects was prepared. By means of immersion ultrasonic C scan and digital image DIC technique, the damage evolution and normal deformation were characterized and monitored. The delamination propagation behavior and failure deformation characteristics of laminates with various defect sizes under compression loading were studied, and the influence mechanism of the size of the delamination defects on the bearing capacity of the laminates was revealed. A numerical model of open-hole laminate was established based on the cohesion element method. The damage propagation mechanism of open-hoe laminate with single prefabricated laminated defects was explored. Based on the optimized model, the numerical prediction and analysis of the buckling deformation, delamination expansion and bearing capacity of the open-hole laminate with two delaminated coupling defects were carried out. The experimental results show that the specimen with single delamination defect presents the initial compression, local buckling and overall buckling. The delamination size has significant impact on the compressive capability, which decreases with the increasing of delamination size. The numerical results of two delaminated defects show the second delaminated defect further reduces the compressive bearing capacity. The failure model of laminate with two coupling defects on the same sides is similar with that of laminates with single prefabricated defect; while, double-crack propagation occurs in the asymmetrical coupled laminated structure on the opposite side, which further weakens the compression bearing capacity of open-hole laminates.

     

  • loading
  • [1]
    FREITAS M D, CARVALHO R D. Residual strength of a damaged laminated CFRP under compressive fatigue stresses[J]. Composites Science & Technology,2006,66(3-4):373-378.
    [2]
    TAFRESHI A, OSWALD T. Global buckling behaviour and local damage propagation in composite plates with embedded delaminations[J]. International Journal of Pressure Vessels& Piping,2003,80(1):9-20.
    [3]
    AUERSCH L, SCHMID G. A torque and thrust prediction model for drilling of composite materials[J]. Composites Part A: Applied Science & Manufacturing,2005,36(1):83-93.
    [4]
    KHASHABA U A, EL-SONBATY I A, SELMY A I, et al. Machinability analysis in drilling woven GFR/epoxy composites: Part I-Effect of machining parameters[J]. Composites Part A: Applied Science & Manufacturing,2010,41(3):391-400.
    [5]
    DUAN Q F, LI S X, SONG P H, et al. Effect of drilling-induced delamination on buckling behavior of open hole composite laminate specimens under compressive loading[J]. Strength of Materials,2019,51:624-632.
    [6]
    HAN P K, WHITEHEAD R S, KAUTZ E F. Damage tolerance certification methodology for composite structures[C]. Eighth DOD(NASA)FAA Conference on Fibrous Compo-sites in Structural Design, Part 2. NASA. Langley Research Center, 1990.
    [7]
    MCGOWAN D M, AMBUR D R. Structural response of composite sandwich panels impacted with and without compression loading[J]. Journal of Aircraft,1971,36(3):596-602.
    [8]
    KARIMI N Z, HEIDARY H, FOTOUHI M, et al. Experimental analysis of GFRP laminates subjected to compression after drilling[J]. Composite Structures, 2017, 169: 144–152.
    [9]
    OLSSON R. Analytical prediction of large mass impact damage in composite laminates[J]. Composites Part A: Applied Science & Manufacturing,2001,32(9):1207-1215.
    [10]
    王雪明, 谢富原, 李敏, 等. 热压罐成型复合材料复杂结构对制造缺陷的影响规律[J]. 航空学报, 2009, 30(4):757-762. doi: 10.3321/j.issn:1000-6893.2009.04.029

    WANG Xueming, XIE Fuyuan, LI Min, et al. Effect of complex structure on manufacturing defects of composite materials formed by auto-claves[J]. Acta Aeronautica et Astronautica Sinica,2009,30(4):757-762(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.04.029
    [11]
    KATERELOS D G, PAIPETIS A, KOSTOPOULOS V. A simple model for the prediction of the fatigue delamination growth of impacted composite panels[J]. Fatigue & Fracture of Engineering Materials& Structures,2004,27(10):911-922.
    [12]
    ISMAIL S O, OJO S O, DHAKAL H N. Thermo-mechanical modelling of FRP cross-ply composite laminates drilling: Delamination damage analysis[J]. Composites Part B: Engineering,2017,108:45-52. doi: 10.1016/j.compositesb.2016.09.100
    [13]
    张明辉, 周储伟, 鲁浩. 碳纤维复合材料单向板钻孔分层损伤的数值模拟[J]. 机械工程材料, 2019, 43(9):73-77.

    ZHANG Minghui, ZHOU Chuwei, LU Hao. Numerical simulation of delamination dam-age of carbon fiber composite plate in borehole[J]. Materials for Mechanical Engineering,2019,43(9):73-77(in Chinese).
    [14]
    唐荆, 陈啸, 杨科. 碳纤维复合材料开孔层合板压缩损伤预测和模型比较[J]. 玻璃钢/复合材料, 2019(10):33-39.

    TANG Jing, CHEN Xiao, YANG Ke. Compression damage prediction and model comparison of carbon fiber compo-site open-hole laminates[J]. Fiber Reinforced Plastics/Composites,2019(10):33-39(in Chinese).
    [15]
    温泉, 郭东明, 高航, 等. 碳纤维/环氧树脂复合材料制孔损伤综合评价方法[J]. 复合材料学报, 2016, 33(2):265-272.

    WEN quan, GUO Dongming, GAO Hang, et al. Comprehensive evaluation method for hole damage of carbon fiber/epoxy resin composites[J]. Acta Materiae Compositae Sinica,2016,33(2):265-272(in Chinese).
    [16]
    卓越, 关志东, 周睿, 等. 复合材料开孔层板压缩渐进损伤试验[J]. 复合材料学报, 2015, 32(6):1762-1768.

    ZHUO Yue, GUAN Zhidong, ZHOU Rui, et al. Experimental study on progressive damage of composite laminates by compression[J]. Acta Materiae Compositae Sinica,2015,32(6):1762-1768(in Chinese).
    [17]
    OJO S O, ISMAIL S O, PAGGI M, et al. A new analytical critical thrust force model for delamination analysis of laminated composites during drilling operation[J]. Composites Part B: Engineering, 2017, 124: 207–217.
    [18]
    姜晓伟, 朱书华, 李国弘, 等. 含分层缺陷复合材料层合板分层扩展研究[J]. 航空计算技术, 2014, 44(5):73-76. doi: 10.3969/j.issn.1671-654X.2014.05.018

    JIANG Xiaowei, ZHU Shuhua, LI Guohong,et al. Research on layered extension of composite laminates with layered defects[J]. Aeronautical Computing Technology,2014,44(5):73-76(in Chinese). doi: 10.3969/j.issn.1671-654X.2014.05.018
    [19]
    NILSSON K F, ASP L E, ALPMAN J E, et al. Delamination buckling and growth for delaminations at different depths in a slender composite panel[J]. International Journal of Solids & Structures, 2001, 38(17): 3039-3071.
    [20]
    刘雅玲, 王康康, 赵丽滨. 含预制分层复合材料层合板的压缩失效行为研究[C]//北京力学会第二十三届学术年会会议论文集. 北京: 北京力学会, 2017: 2.

    LIU Yaling, WANG Kangkang, ZHAO Libin. Study on compression failure behavior of laminated plates containing precast laminated composites[C]//Proceedings of the 23rd Annual Conference of Beijing Society of Mechanics. Beijing: Beijing Society of Mechanics, 2017: 2(in Chinese).
    [21]
    RHEAD A T, BUTLER R, HUNT G W. Compressive strength of composite laminates with delamination-induced interaction of panel and sublaminate buckling modes[J]. Composite Structures, 2017, 171: 326-334.
    [22]
    ASTM. Standard test method for tensile properties of polymer matrix composite materials: ASTM D3039/D3039M—17[S]. West Conshohocken: ASTM International, 2017.
    [23]
    ASTM. Standard test method for compressive properties of polymer matrix composite materials using a combined loading compression (CLC) test fixture: ASTM D6641/D6641M—16[S]. West Conshohocken: ASTM International, 2016.
    [24]
    ASTM. Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45° laminate: ASTM D3518/D3518M—18[S]. West Conshohocken: ASTM International, 2018.
    [25]
    ELICES M, GUINEA G V, GÓMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics,2002,69(2):137-163. doi: 10.1016/S0013-7944(01)00083-2
    [26]
    WANG R G, ZHANG L, ZHANG J, et al. Numerical analysis of delamination buckling and growth in slender laminated composite using cohesive element method[J]. Computational Materials Science, 2010, 50(1): 20-31.
    [27]
    LIU P F, GU Z P, PENG X Q, et al. Finite element analysis of the influence of cohesive law parameters on the multiple delamination behaviors of composites under compression[J]. Composite Structures, 2015, 131: 975-986.
    [28]
    TURON A, CAMANHO P P, COSTA J, et al. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness[J]. Composite Structures,2010,92(8):1857-1864. doi: 10.1016/j.compstruct.2010.01.012
    [29]
    MOURA M F S F, GONÇALVES J P M, MARQUES A T, et al. Prediction of compressive strength of carbon-epoxy laminates containing delamination by using a mixed-mode damage model[J]. Composite Structures,2000,50(2):151-157. doi: 10.1016/S0263-8223(00)00091-X
    [30]
    LAKSHMINARAYANA H V, BOUKHILI R, GAUVIN R. Impact response of laminated composite plates: Prediction and verification[J]. Composite Structures, 1994, 28(1): 61-72.
    [31]
    HÜHNE C, ZERBST A K, KUHLMANN G, et al. Progressive damage analysis of composite bolted joints with liquid shim layers using constant and continuous degradation models[J]. Composite Structures,2010,92(2):189-200. doi: 10.1016/j.compstruct.2009.05.011
    [32]
    张延林, 李秋阳. 碳布增强木质层合板的有限元渐进损伤分析[J]. 沈阳工业大学学报, 2017, 39(1):22-27.

    ZHANG Yanlin, LI Qiuyang. Finite element progressive damage analysis of carbon fabric reinforced wood laminates[J]. Journal of Shenyang University of Technology,2017,39(1):22-27(in Chinese).
    [33]
    LSTC. Keyword User’s Manual, Volume II[M]. Livermore: Version 11 R11.0. 0, 2018.
    [34]
    HOU J P, PETRINIC N, RUIZ C, et al. Prediction of impact damage in composite plates[J]. Composites Science & Technology,2000,60(2):273-281.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(4)

    Article Metrics

    Article views (1075) PDF downloads(84) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return