Citation: | HE Hongmei, GAO Xingzhong, XIANG He, et al. Compression and bending properties of 3D braided tubular composites[J]. Acta Materiae Compositae Sinica. |
With the development of composite materials, three-dimensional braided tubular composite materials are widely used in load-bearing structural components. Fiber properties have a significant effect on the mechanical properties of tubular composites, but the deformation and failure evolution of different fiber composite are not clear. This paper investigates the mechanical properties of different tubular composite materials braided composites and their deformation and failure evolution by preparing two kinds of fiber-reinforced tubular composites with high modulus and high strength and high toughness fibers.
In this paper, the preparation of tubular preform adopts four-step three-dimensional braiding technology, and the parameters such as braiding angle and knurl height are ensured to be consistent through the controlled variable method. The test takes the silicone round rod as the mandrel, the carbon fiber and ultra-high molecular weight polyethylene fiber are circularly braided and molded through the four-step method, and the yarns are clustered on the mandrel to form the carbon fiber tubular preform and the ultra-high molecular weight polyethylene fiber tubular preform. The two kinds of fiber fittings composites are prepared by combining the vacuum-assisted resin transfer molding process. In order to investigate their failure behavior, this paper refers to the GB/T1446-2005 standard and GB/T1449-2005 “Test
for Flexural Performance of Fiber Reinforced Plastics” to conduct axial quasi-static compression test and three-point bending test on the specimens respectively. A high-speed photographic instrument is used to record the compression damage process of the specimens. Through Digital image correlation (DIC) method, the specimen surface is scattered and the deformation information of the region is obtained through correlation calculation to demonstrate the deformation and failure process of tubular composite materials.
(1) The deformation of carbon fiber tubular composite changed significantly in a shorter time than that of UHMWPE fiber tubular composite, and the two showed different damage characteristics. The distribution of deformation of carbon fiber tubular composite changes significantly at 17.4 s, The deformation is mainly concentrated in the region of shear slippage occurs. Deformation of UHMWPE fiber tubular composite at the beginning stage is relatively uniform until 58.2 s when the distribution of deformation significantly changes, which gradually concentrated in the middle of the “bulge” region. Carbon fiber tubular composite presents obvious shear damage characteristics, UHMWPE material presents toughness pressure collapse deformation process. After reaching the maximum load, if the strain variable increased 0.5%, the stress value of carbon fiber composite material declines rapidly, the percentage of decline is 14%. While the UHMWPE material is “fluctuating” decline, the percentage of decline is 0.72%. (2) The compression strength and energy absorption of carbon fiber tubular composites are higher than that of UHMWPE materials, with compression strength of 110.64 MPa, 56% higher than that of UHMWPE materials, and energy absorption value follows the same pattern, which is about 20.9% higher than that of UHMWPE materials. (3) The bending strength of carbon fiber tubular composite is higher than that of UHMWPE composite. The bending strength of carbon fiber material is 38.63 MPa, it is 50% higher than the bending strength of UHMWPE material. The bending energy absorption of carbon fiber tubular composites is 463.1 J, 68% higher than that of UHMWPE.Conclusions: The deformation of high toughness UHMWPE fiber tubular composite material in compression is more uniform than that of high strength and high modulus carbon fiber tubular composite material, and the deformation of specimen is more inclined to the overall strain rather than the local concentrated strain. In addition, the compression and bending strengths of the high-strength and high-modulus fittings are 56% and 50% higher than those of the high- toughness composites, respectively. The compression and bending energy absorption is 20.9% and 68% higher than that of the high- toughness composites, respectively. The deformation evolution of the tubular composites indicates that the enhancement of strength and modulus can increase the energy absorption of composites.
[1] |
熊信发, 王校培, 王坤, 等. 三维编织复合材料圆管轴向压缩性能及破坏机理[J]. 南京航空航天大学学报, 2023, 55(4): 702-10.
XIONG Qifa, WANG Xiaopei, WANG Kun, et al. Axial compression properties and damage mechanism of three-dimensional braided composite circular tubes[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2023, 55(4): 702-10(in Chinese).
|
[2] |
XU K, QIAN X M. Analytical prediction of the elastic properties of 3D braided composites based on a new multiunit cell model with consideration of yarn distortion[J]. Mech Mater, 2016, 92: 139-54. DOI: 10.1016/j.mechmat.2015.09.007
|
[3] |
ZHENG Y Y, SUN Y, LI J L, et al. Tensile response of carbon-aramid hybrid 3D braided composites[J]. Mater Des, 2017, 116: 246-52. DOI: 10.1016/j.matdes.2016.11.082
|
[4] |
ZENG T, FANG D N, LU T J. Dynamic crashing and impact energy absorption of 3D braided composite tubes[J]. Mater Lett, 2005, 59(12): 1491-6. DOI: 10.1016/j.matlet.2005.01.007
|
[5] |
ROY S S, POTLURI P, SOUTIS C. Tensile Response of Hoop Reinforced Multiaxially Braided Thin Wall Composite Tubes[J]. Appl Compos Mater, 2017, 24(2): 397-416. DOI: 10.1007/s10443-016-9570-8
|
[6] |
MCGREGOR C, VAZIRI R, POURSARTIP A, et al. Axial crushing of triaxially braided composite tubes at quasi-static and dynamic rates[J]. Compos Struct, 2016, 157: 197-206. DOI: 10.1016/j.compstruct.2016.08.035
|
[7] |
遇家运, 刘佳. 复合材料圆管成型工艺及性能研究现状[J]. 纤维复合材料, 2022, 39(1): 82-6. DOI: 10.3969/j.issn.1003-6423.2022.01.015
YU Jiayun, LIU Jia. Current status of research on composite round tube molding process and properties[J]. Fiber Composite Materials, 2022, 39(1): 82-6(in Chinese). DOI: 10.3969/j.issn.1003-6423.2022.01.015
|
[8] |
ZHANG W, GU B H, SUN B Z. Thermal-mechanical coupling modeling of 3D braided composite under impact compression loading and high temperature field[J]. Compos Sci Technol, 2017, 140: 73-88. DOI: 10.1016/j.compscitech.2016.12.019
|
[9] |
李金超, 陈利, 邢静忠. 三维五向编织复合材料强度的有限元分析[J]. 宇航材料工艺, 2010, 40(5): 37-9+46. DOI: 10.3969/j.issn.1007-2330.2010.05.009
LI Jinchao, CHEN Li, XING Jingzhong. Finite element analysis of the strength of three-dimensional five-way braided composites[J]. Aerospace Materials Processing, 2010, 40(5): 37-9+46(in Chinese). DOI: 10.3969/j.issn.1007-2330.2010.05.009
|
[10] |
同黎娜. 国产碳纤维大有可为 [N]. 中国纺织报2021-10-13.
TONG Lina. Domestic carbon fiber has great promise [N]. China Textile Newspaper 2021-10-13. (in Chinese)
|
[11] |
LAPENA M H, MARINUCCI G. Mechanical Characterization of Basalt and Glass Fiber Epoxy Composite Tube[J]. Mater Res-Ibero-am J Mater, 2018, 21(1): 7.
|
[12] |
LEHTINIEMI P, DUFVA K, BERG T, et al. Natural fiber-based reinforcements in epoxy composites processed by filament winding[J]. J Reinf Plast Compos, 2011, 30(23): 1947-55. DOI: 10.1177/0731684411431019
|
[13] |
THIRUMAVALAVAN K, SARUKASAN D. Experimental investigation on multi-layered filament wound basalt/E-glass hybrid fiber composite tubes[J]. Mater Res Express, 2022, 9(4): 29.
|
[14] |
杜刚, 曾竟成, 肖加余, 等. 复合材料圆管端部加强对其轴压性能影响的实验分析[J]. 材料科学与工程学报, 2007, (3): 457-9. DOI: 10.3969/j.issn.1673-2812.2007.03.033
DU Gang, ZENG Jingcheng, XIAO Jiayu, et al. Experimental analysis of the effect of end reinforcement on the axial compressive properties of composite circular tubes[J]. Journal of Materials Science and Engineering, 2007, (3): 457-9(in Chinese). DOI: 10.3969/j.issn.1673-2812.2007.03.033
|
[15] |
马其华, 查一斌, 周天俊. Al-CFRP复合管的径向压缩性能[J]. 工程塑料应用, 2019, 47(11): 99-104. DOI: 10.3969/j.issn.1001-3539.2019.11.018
MA Qihua, CHA Yibin, ZHOU Tianjun. Radial compression properties of Al-CFRP composite pipes[J]. Engineering Plastics Applications, 2019, 47(11): 99-104(in Chinese). DOI: 10.3969/j.issn.1001-3539.2019.11.018
|
[16] |
周伟旭. 碳纤维增强树脂基复合材料在轨道交通车辆车体中的应用与思考[J]. 城市轨道交通研究, 2018, 21(12): 10-3.
ZHOU Weixu. Application and Reflection of Carbon Fiber Reinforced Resin Matrix Composites in Railway Vehicle Body[J]. Urban Rail Transportation Research, 2018, 21(12): 10-3(in Chinese).
|
[17] |
孙政, 付艳恕, 詹博文, 等. 复合材料吸能圆管轴向准静态压缩失效机理研究[J]. 塑料科技, 2017, 45(4): 36-40.
SUN Zheng, FU Yashu, ZHAN Bowen, et al. Study on the failure mechanism of axial quasi-static compression of composite energy-absorbing circular pipe[J]. Plastics Technology, 2017, 45(4): 36-40(in Chinese).
|
[18] |
CROUCH I G. Body armour - New materials, new systems[J]. Def Technol, 2019, 15(3): 241-53. DOI: 10.1016/j.dt.2019.02.002
|
[19] |
QIN F Y, LEI Z K, MA Y, et al. Stress transfer of single yarn drawing in soft fabric studied by micro Raman spectroscopy[J]. Compos Pt A-Appl Sci Manuf, 2018, 112: 134-41. DOI: 10.1016/j.compositesa.2018.06.002
|
[20] |
LIU Y, HAN Y, YUAN L, et al. Synergistic Enhancement of the Friction and Wear Performance for UHMWPE Composites under Different Aging Times[J]. Polymers, 2024, 16(14): 2059-. DOI: 10.3390/polym16142059
|
[21] |
陈利, 李学明. 三维四步法圆型编织结构分析[J]. 复合材料学报, 2003, (2): 76-80. DOI: 10.3321/j.issn:1000-3851.2003.02.014
CHEN Li, LI Xueming. Structural analysis of three-dimensional four-step circular braided structures[J]. Journal of Composite Materials, 2003, (2): 76-80(in Chinese). DOI: 10.3321/j.issn:1000-3851.2003.02.014
|
[22] |
张徐梁. 三维五向碳纤/玻纤混杂编织复合材料圆管的制备及能量吸收性能 [D], 2021.
ZHANG Xuliang. Preparation and Energy Absorption Properties of Three-Dimensional Five-Way Carbon Fiber/Glass Fiber Hybrid Braided Composite Round Tubes [D], 2021. (in Chinese)
|
[23] |
户迎灿, 张联合, 崔健, 等. 基于VARTM的碳纤维单向与三维编织混杂织物树脂灌注工艺[J]. 工程塑料应用, 2024, 52(2): 57-65. DOI: 10.3969/j.issn.1001-3539.2024.02.010
HU Yingcan, ZHANG Lianhe, CUI Jian, et al. Resin infusion process for unidirectional and three-dimensional woven hybrid fabrics of carbon fibers based on VARTM[J]. Engineering Plastics Applications, 2024, 52(2): 57-65(in Chinese). DOI: 10.3969/j.issn.1001-3539.2024.02.010
|
[24] |
中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料 压缩性能试验方法: GB/T 1446−2005[S]. 北京: 中国标准出 版社, 2005.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiberreinforced plastic composites-Determination of compress properties: GB/T 1446−2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
|
[25] |
中华人民共和国国家质量监督检验检疫总局. 纤维增强塑料 弯曲性能试验方法: GB/T 1449−2005[S]. 北京: 中国标准出 版社, 2005.
General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. Fiberreinforced plastic composites-Determination of flexural properties: GB/T 1449−2005[S]. Beijing: China Standards Press, 2005 (in Chinese).
|
[26] |
陈静, 莫莉花, 房怡, 等. 分层缺陷对CFRP层合板力学性能的影响[J]. 工程塑料应用, 2024, 52(4): 122-7. DOI: 10.3969/j.issn.1001-3539.2024.04.019
CHEN Jing, MO Lihua, FANG Yi, et al. Effect of delamination defects on mechanical properties of CFRP laminates[J]. Engineering Plastics Applications, 2024, 52(4): 122-7(in Chinese). DOI: 10.3969/j.issn.1001-3539.2024.04.019
|
[27] |
余海燕, 贺宏伟, 邢萍. 考虑不同刚度退化模式的碳纤维增强复合材料失效模型开发[J]. 机械工程学报, 2024, 60(2): 197-208.
YU Haiyan, HE Hongwei, XING Ping. Development of failure models for carbon fiber reinforced composites considering different stiffness degradation modes[J]. Journal of Mechanical Engineering, 2024, 60(2): 197-208(in Chinese).
|
[1] | WANG Weiran, HE Hui. Preparation of magnetic chitosan composites and their adsorption properties on uranium[J]. Acta Materiae Compositae Sinica. |
[2] | ZHANG Yishuo, ZHOU Zhongkui, LI Longxiang, GUO Yadan, SUN Zhanxue. Study on adsorption effect and mechanism of uranium by hydroxyapatite modified bentonite[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6740-6755. DOI: 10.13801/j.cnki.fhclxb.20230314.003 |
[3] | WANG Ziming, ZHAO Jiayin, QIN Kaiwen, ZHANG Shuang, WANG Yingcai, LIU Yunhai, LIU Yuhui. Adsorption behavior of U(VI) on functionalized three-dimensional graphene composite aerogel[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6139-6153. DOI: 10.13801/j.cnki.fhclxb.20230113.001 |
[4] | LI Shiyou, HU Junyi, HE Junqin, WANG Yang, QIAO Jishuai, WANG Guohua. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878. DOI: 10.13801/j.cnki.fhclxb.20211116.003 |
[5] | ZHANG Yunxiu, CAO Minghui, ZHENG Shaodi, JIANG Yuanping. Recent advances in uranium adsorption by biomass based composite[J]. Acta Materiae Compositae Sinica, 2022, 39(1): 111-125. DOI: 10.13801/j.cnki.fhclxb.20210625.002 |
[6] | WU Suiyi, LI Shiyou, HU Junyi, HE Junqin, WANG Guohua, RONG Lishan, JIN Yuanyuan. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium (VI)[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 3073-3083. DOI: 10.13801/j.cnki.fhclxb.20201112.002 |
[7] | LIU Jinxiang, XIONG Fen, XIE Shuibo, LIU Yingjiu, LIAO Wei, PU Yashuai. Adsorption characteristic and mechanism of Uranium (Ⅵ) by nano Fe3O4/Aspergillus niger magnetic microspheres[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2826-2833. DOI: 10.13801/j.cnki.fhclxb.20170303.003 |
[8] | LIU Xingqun, XIE Shuibo, ZENG Fanyong, ZHONG Yu, ZENG Taotao, LIU Yingjiu. Characteristics and mechanism of uranium (Ⅵ) adsorption by Fe(Ⅱ)-Al LDH[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 183-190. DOI: 10.13801/j.cnki.fhclxb.20160308.001 |
[9] | XIE Shuibo, LUO Jingyang, LIU Qing, LING Hui, DUAN Yi, WANG Jinsong. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(Ⅵ)[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 268-275. DOI: 10.13801/j.cnki.fhclxb.20140519.002 |
[10] | ZHANG Linxi, SUN Yuzhen, LUO Mingbiao, LIU Shujuan, HU Jun. Adsorption of uranium by chemically modified titanate nanowhiskers[J]. Acta Materiae Compositae Sinica, 2011, 28(3): 96-102. |