LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878. DOI: 10.13801/j.cnki.fhclxb.20211116.003
Citation: LI Shiyou, HU Junyi, HE Junqin, et al. Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4868-4878. DOI: 10.13801/j.cnki.fhclxb.20211116.003

Preparation of MXene/SA gel microspheres and its adsorption performance for U(VI)

More Information
  • Received Date: September 15, 2021
  • Revised Date: October 26, 2021
  • Accepted Date: October 30, 2021
  • Available Online: November 16, 2021
  • In order to improve the adsorption capacity and recyclability of the nanomaterial MXene, sodium alginate (SA) and MXene were mixed by ion cross-linking method to fix the Ti3C2Tx MXene nanomaterial on the SA aerogel matrix. After freeze-drying, MXene/SA gel microspheres was prepared. The structure of the gel microspheres was characterized by SEM-EDS, FTIR and XPS, and the adsorption characteristics of MXene/SA gel microspheres to uranium (VI) in aqueous solution were investigated under the influence of different factors, and its recycling ability was explored. The results show that the adsorption of uranium by MXene/SA gel microspheres follows the pseudo-second-order kinetics and Langmuir isotherm adsorption model, indicating that the adsorption is mainly monolayer chemical adsorption, and the thermodynamic parameters indicate that the adsorption process is a spontaneous endothermic. When the pH is 4 and the temperature is 298 K, the maximum adsorption capacity of MXene/SA gel microspheres for uranium is 126.82 mg·g−1. The main adsorption mechanism is ion exchange and complexation. More importantly, after 5 cycles of the gel microspheres, the removal rate remains above 90%, indicating that the adsorbent has the performance of recycling and reuse and will not cause secondary pollution to the water environment. Therefore, MXene/SA gel microsphere adsorbent has shown great potential in repairing the pollution of radionuclide uranium wastewater.
  • [1]
    XIE Y, CHEN C, REN X, et al. Emerging natural and tailored materials for uranium-contaminated water treatment and environmental remediation[J]. Progress in Materials Science,2019,103:180-234. DOI: 10.1016/j.pmatsci.2019.01.005
    [2]
    WANG X, CHEN L, WANG L, et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides[J]. Science China Chemistry,2019,62(8):933-967. DOI: 10.1007/s11426-019-9492-4
    [3]
    ZAHERI P, DAVARKHAH R. Selective separation of uranium from sulfuric acid media using a polymer inclusion membrane containing alamine336[J]. Chemical Papers,2020,74(8):2573-2581. DOI: 10.1007/s11696-019-01029-9
    [4]
    ORREGO P, HERNANDEZ J, REYES A. Uranium and molybdenum recovery from copper leaching solutions using ion exchange[J]. Hydrometallurgy,2019,184:116-122. DOI: 10.1016/j.hydromet.2018.12.021
    [5]
    OROZCO I, ROMERO M, LARA R, et al. Precipitation of uranium from alkaline liqueurs[J]. Materia (Rio de Janeiro),2018,23(2):e12008. DOI: 10.1590/S1517-707620180002.0345
    [6]
    BERGER C, MARIE C, GUILLAUMONT D, et al. Extraction of uranium(VI) and plutonium(IV) with tetra-alkylcarbamides[J]. Solvent Extraction and Ion Exchange,2019,37(2):111-125. DOI: 10.1080/07366299.2019.1630095
    [7]
    YU S, MA J, SHI Y, et al. Uranium(VI) adsorption on montmorillonite colloid[J]. Journal of Radioanalytical and Nu-clear Chemistry,2020,324(2):541-549. DOI: 10.1007/s10967-020-07083-y
    [8]
    CHEN S, HU J, HAN S, et al. A review on emerging composite materials for cesium adsorption and environmental remediation on the latest decade[J]. Separation and Purification Technology,2020,251:117340. DOI: 10.1016/j.seppur.2020.117340
    [9]
    NAGUIB M, KURTOGLU M, PRESSER V, et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2[J]. Advanced Materials,2011,23(37):4248-4253. DOI: 10.1002/adma.201102306
    [10]
    ALHABEB M, MALESKI K, MATHIS T S, et al. Selective etching of silicon from Ti3SiC2 (MAX) to obtain 2D titanium carbide (MXene)[J]. Angewandte Chemie International Edition,2018,57(19):5444-5448. DOI: 10.1002/anie.201802232
    [11]
    HAN M, YIN X, LI X, et al. Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes[J]. ACS Applied Materials & Interfaces,2017,9(23):20038-20045. DOI: 10.1021/acsami.7b04602
    [12]
    SHAHZAD A, RASOOL K, MIRAN W, et al. Two-dimensional Ti3C2Tx MXene nanosheets for efficient copper removal from water[J]. ACS Sustainable Chemistry & Engineering,2017,5(12):11481-11488. DOI: 10.1021/acssuschemeng.7b02695
    [13]
    ANASORI B, LUKATSKAYA M R, GOGOTSI Y. 2D metal carbides and nitrides (MXenes) for energy storage[J]. Nature Reviews Materials,2017,2(2):16098. DOI: 10.1038/natrevmats.2016.98
    [14]
    ZHANG Y J, ZHOU Z J, LAN J H, et al. Theoretical insights into the uranyl adsorption behavior on vanadium carbide MXene[J]. Applied Surface Science,2017,426:572-578. DOI: 10.1016/j.apsusc.2017.07.227
    [15]
    HANTANASIRISAKUL K, GOGOTSI Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes)[J]. Advanced Materials,2018,30(52):1804779. DOI: 10.1002/adma.201804779
    [16]
    WANG L, SONG H, YUAN L, et al. Efficient U(VI) reduction and sequestration by Ti2CTx MXene[J]. Environmental Science & Technology,2018,52(18):10748-10756. DOI: 10.1021/acs.est.8b03711
    [17]
    POGREBNJAK A, SUKHODUB L, SUKHODUB L, et al. Composite material with nanoscale architecture based on bioapatite, sodium alginate and ZnO microparticles[J]. Ceramics International,2019,45(6):7504-7514. DOI: 10.1016/j.ceramint.2019.01.043
    [18]
    JIAO C, XIONG J, TAO J, et al. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study[J]. International Journal of Biological Macromolecules,2016,83:133-141. DOI: 10.1016/j.ijbiomac.2015.11.061
    [19]
    朱韵伊, 彭伟, 林泽慧, 等. MXene基水凝胶复合材料的研究进展[J]. 复合材料学报, 2021, 38(7):2010-2024. DOI: 10.13801/j.cnki.fhclxb.20210302.004

    ZHU Yunyi, PENG Wei, LIN Zehui, et al. Research progress of MXene-based hydrogel composites[J]. Acta Materiae Compositae Sinica,2021,38(7):2010-2024(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210302.004
    [20]
    ZHANG T, ZHANG W, XI H, et al. Polydopamine functionalized cellulose-MXene composite aerogel with superior adsorption of methylene blue[J]. Cellulose,2021,28(7):4281-4293. DOI: 10.1007/s10570-021-03737-6
    [21]
    SHAHZAD A, NAWAZ M, MOZTAHIDA M, et al. Ti3C2Tx MXene core-shell spheres for ultrahigh removal of mercuric ions[J]. Chemical Engineering Journal,2019,368:400-408. DOI: 10.1016/j.cej.2019.02.160
    [22]
    FENG Y, WANG H, XU J, et al. Fabrication of MXene/PEI functionalized sodium alginate aerogel and its excellent adsorption behavior for Cr(VI) and Congo Red from aqueous solution[J]. Journal of Hazardous Materials,2021,416:125777. DOI: 10.1016/j.jhazmat.2021.125777
    [23]
    ZHANG Z H, XU J Y, YANG X L. MXene/sodium alginate gel beads for adsorption of methylene blue[J]. Materials Chemistry and Physics,2021,260:124123. DOI: 10.1016/j.matchemphys.2020.124123
    [24]
    郭成, 郝军杰, 李明阳, 等. 海藻酸钠/聚乙烯亚胺凝胶球的合成及对Cr(VI)的吸附性能和机制[J]. 复合材料学报, 2021, 38(7):2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003

    GUO Cheng, HAO Junjie, LI Mingyang, et al. Adsorption of Cr(VI) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica,2021,38(7):2140-2151(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20201015.003
    [25]
    YI X, SUN F, HAN Z, et al. Graphene oxide encapsulated polyvinyl alcohol/sodium alginate hydrogel microspheres for Cu(II) and U(VI) removal[J]. Ecotoxicology and Envi-ronmental Safety,2018,158:309-318. DOI: 10.1016/j.ecoenv.2018.04.039
    [26]
    LIU H, ZHOU Y, YANG Y, et al. Synthesis of polyethylenimine/graphene oxide for the adsorption of U(VI) from aqueous solution[J]. Applied Surface Science,2019,471:88-95. DOI: 10.1016/j.apsusc.2018.11.231
    [27]
    ZHANG W, WANG H, HU X, et al. Multicavity triethylenetetramine-chitosan/alginate composite beads for enhanced Cr(VI) removal[J]. Journal of Cleaner Production,2019,231:733-745. DOI: 10.1016/j.jclepro.2019.05.219
    [28]
    SHAHZAD A, MOZTAHIDA M, TAHIR K, et al. Highly effective prussian blue-coated MXene aerogel spheres for selective removal of cesium ions[J]. Journal of Nuclear Materials,2020,539:152277. DOI: 10.1016/j.jnucmat.2020.152277
    [29]
    JUN B M, JANG M, PARK C M, et al. Selective adsorption of Cs+ by MXene (Ti3C2Tx) from model low-level radioactive wastewater[J]. Nuclear Engineering and Technology,2020,52(6):1201-1207. DOI: 10.1016/j.net.2019.11.020
    [30]
    ZHANG P, WANG L, DU K, et al. Effective removal of U(VI) and Eu(III) by carboxyl functionalized MXene nanosheets[J]. Journal of Hazardous Materials,2020,396:122731. DOI: 10.1016/j.jhazmat.2020.122731
    [31]
    郑骁, 王学松, 陈光, 等. 离子强度和pH对针铁矿吸附水溶液中Cd(Ⅱ)的影响[J]. 环境工程, 2019, 37(7):119-123, 208. DOI: 10.13205/j.hjgc.201907022

    ZHENG Xiao, WANG Xuesong, CHEN Guang, et al. Effect of ionic strength and pH on adsorption of Cd(Ⅱ) on Goethite from aqueous solution[J]. Environmental Engineering,2019,37(7):119-123, 208(in Chinese). DOI: 10.13205/j.hjgc.201907022
    [32]
    伍随意, 李仕友, 胡俊毅, 等. 聚乙烯亚胺改性磁性酵母复合材料去除铀(VI)的性能[J]. 复合材料学报, 2021, 38(9):3065-3075.

    WU Suiyi, LI Shiyou, HU Junyi, et al. Adsorption properties of polyethyleneimine modified magnetic yeast composites for uranium(VI)[J]. Acta Materiae Compositae Sinica,2021,38(9):3065-3075(in Chinese).
    [33]
    ZHANG W, SONG J, HE Q, et al. Novel pectin based composite hydrogel derived from grapefruit peel for enhanced Cu(II) removal[J]. Journal of Hazardous Materials,2020,384:121445. DOI: 10.1016/j.jhazmat.2019.121445
  • Related Articles

    [1]HUANG Jian, SUN Yunyun, ZHANG Hua, XI Shanshan, WANG Jinhua, ZHANG Jiamei, HE Chunhua, LUO Tao, YU Yunhan. Preparation and adsorption mechanism of NHFO@pumice for ammonia nitrogen[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6130-6138. DOI: 10.13801/j.cnki.fhclxb.20230222.010
    [2]ZHU Gaojian, CHEN Lidong, DUAN Sheng, WU Weibing, DAI Hongqi, BIAN Huiyang. Research progress on adsorption properties of biomass materials for micro/nano plastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. DOI: 10.13801/j.cnki.fhclxb.20220621.001
    [3]RONG Lishan, XIA lin, ZHOU Shukui, XIONG Chaofan, DUAN Yi. Preparation of UiO-66/chitosan and its adsorption mechanism of U(VI)[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4879-4888. DOI: 10.13801/j.cnki.fhclxb.20211025.002
    [4]XU Dongying, XIE Zhiyin, YU Jing, LIU Jianying, XU Chenghua, DENG Zhiyong, ZHAI Wanting, HAO Qi. Adsorption mechanism of ofloxacin in water with "core-shell" magnetic adsorbent Mn0.6Zn0.4Fe2O4@SiO2-CeO2 capable of oxidation regeneration[J]. Acta Materiae Compositae Sinica, 2022, 39(6): 2750-2763. DOI: 10.13801/j.cnki.fhclxb.20210722.002
    [5]GUO Cheng, HAO Junjie, LI Mingyang, LONG Hongming, GAO Xiangpeng. Adsorption of Cr(Ⅵ) on porous sodium alginate/polyethyleneimine hydrogel beads and its mechanistic study[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2140-2151. DOI: 10.13801/j.cnki.fhclxb.20201015.003
    [6]CHEN Shanglong, TANG Shirong. Preparation of sodium acrylate-corncobs graft copolymers and its adsorption mechanism for Ni2+[J]. Acta Materiae Compositae Sinica, 2021, 38(6): 1939-1949. DOI: 10.13801/j.cnki.fhclxb.20200922.004
    [7]QIAO Dan, ZHANG Yongde, LUO Xuegang, ZONG Youli, ZHANG Siyue. Adsorption properties and mechanisms of potassium nickel hexacyanoterrate/carboxymethyl konjac glucomannan gel microspheres for Cs+[J]. Acta Materiae Compositae Sinica, 2018, 35(7): 1939-1951. DOI: 10.13801/j.cnki.fhclxb.20171016.001
    [8]XU Hui, CHEN Nanchun, XIE Qinglin, MA Lili, YU Qingfeng. Preparation of MnCl2-NaOH modified diatomite adsorbent and adsorption mechanism of As(V)[J]. Acta Materiae Compositae Sinica, 2017, 34(12): 2834-2840. DOI: 10.13801/j.cnki.fhclxb.20170314.003
    [9]LIU Xingqun, XIE Shuibo, ZENG Fanyong, ZHONG Yu, ZENG Taotao, LIU Yingjiu. Characteristics and mechanism of uranium (Ⅵ) adsorption by Fe(Ⅱ)-Al LDH[J]. Acta Materiae Compositae Sinica, 2017, 34(1): 183-190. DOI: 10.13801/j.cnki.fhclxb.20160308.001
    [10]XIE Shuibo, LUO Jingyang, LIU Qing, LING Hui, DUAN Yi, WANG Jinsong. Adsorption characteristics and mechanism of hydroxyethyl cellulose/sodium alginate blend films for uranium(Ⅵ)[J]. Acta Materiae Compositae Sinica, 2015, 32(1): 268-275. DOI: 10.13801/j.cnki.fhclxb.20140519.002
  • Cited by

    Periodical cited type(3)

    1. 程超,张晨宇,裴志磊,陈正国,周飞,周金利,张辉,孙泽玉,余木火. 双环戊二烯单体预聚增粘及其碳纤维增强复合材料性能评价. 复合材料学报. 2024(01): 155-169 . 本站查看
    2. 郝励. 碳纤维对SiC陶瓷基材料的导热性能影响研究. 化学与粘合. 2024(03): 235-239 .
    3. 柯锋,王朝恩. 热压制备的碳纤维复合材料不同温度的机械性能测试. 粘接. 2023(10): 112-114 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1972) PDF downloads (77) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return