Citation: | ZHU Gaojian, CHEN Lidong, DUAN Sheng, WU Weibing, DAI Hongqi, BIAN Huiyang. Research progress on adsorption properties of biomass materials for micro/nano plastics[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 637-648. doi: 10.13801/j.cnki.fhclxb.20220621.001 |
[1] |
CHEN X, YAN N. A brief overview of renewable plastics[J]. Materials Today Sustainability,2020,7:100031.
|
[2] |
WANG G, WANG J, XUE Q. Efficient utilization of waste plastics as raw material for metallic iron and syngas production by combining heat treatment pulverization and direct reduction[J]. Process Safety and Environmental Protection,2020,137:49-57. doi: 10.1016/j.psep.2020.02.017
|
[3] |
MACLEOD M, ARP H P H, TEKMAN M B, et al. The global threat from plastic pollution[J]. Science,2021,373(6550):61-65. doi: 10.1126/science.abg5433
|
[4] |
韦曦萍. 不同混凝-超滤工艺下微塑料/有机物体系的膜污染行为研究[D]. 西安: 西安建筑科技大学, 2021.
WEI Xiping. Study on membrane fouling behavior of microplastics/organics under different coagulation ultrafiltration processes[D]. Xi'an: Xi'an University of Architecture and Technology, 2021(in Chinese).
|
[5] |
刘江峡, 刘欢, 刘清泉, 等. 多层级孔材料及水体微塑料处理的研究进展[J]. 合成材料老化与应用, 2020, 49(2):103-108.
LIU Jiangxia, LIU Huan, LIU Qingquan, et al. Research progress of hierarchical porous materials and treatment of water microplastics pollution[J]. Synthetic Materials Aging and Application,2020,49(2):103-108(in Chinese).
|
[6] |
RAJALA K, GRÖNFORS O, HESAMPOUR M, et al. Removal of microplastics from secondary wastewater treatment plant effluent by coagulation/flocculation with iron, aluminum and polyamine-based chemicals[J]. Water Research,2020,183:116045. doi: 10.1016/j.watres.2020.116045
|
[7] |
ARIZA-TARAZONA M C, VILLARREAL-CHIU J F, BARBIERI V, et al. New strategy for microplastic degradation: Green photocatalysis using a protein-based porous N-TiO2 semiconductor[J]. Ceramics International,2019,45(7):9618-9624. doi: 10.1016/j.ceramint.2018.10.208
|
[8] |
ZHENG B, LI B, WAN H, et al. Coral-inspired environmental durability aerogels for micron-size plastic particles removal in the aquatic environment[J]. Journal of Hazardous Materials,2022,431:128611.
|
[9] |
KARIM M E, SANJEE S A, MAHMUD S, et al. Microplastics pollution in Bangladesh: Current scenario and future research perspective[J]. Chemistry and Ecology,2020,36(1):83-99. doi: 10.1080/02757540.2019.1688309
|
[10] |
LAPOINTE M, FARNER J M, HERNANDEZ L M, et al. Understanding and improving microplastic removal during water treatment: Impact of coagulation and flocculation[J]. Environmental Science & Technology,2020,54(14):8719-8727.
|
[11] |
XU Q, HUANG Q S, LUO T Y, et al. Coagulation removal and photocatalytic degradation of microplastics in urban waters[J]. Chemical Engineering Journal,2021,416:129123. doi: 10.1016/j.cej.2021.129123
|
[12] |
ZHANG X L, CHEN J X, LI J. The removal of microplastics in the wastewater treatment process and their potential impact on anaerobic digestion due to pollutants association[J]. Chemosphere,2020,251:126360. doi: 10.1016/j.chemosphere.2020.126360
|
[13] |
SIGHICELLI M, PIETRELLI L, LECCE F, et al. Microplastic pollution in the surface waters of Italian Subalpine Lakes[J]. Environmental Pollution,2018,236:645-651. doi: 10.1016/j.envpol.2018.02.008
|
[14] |
LI P, LAI Y, LI Q, et al. Total organic carbon as a quantita-tive index of micro and nanoplastic pollution[J]. Analytical Chemistry,2022,94(2):740-747. doi: 10.1021/acs.analchem.1c03114
|
[15] |
CINCINELLI A, SCOPETANI C, CHELAZZI D, et al. Microplastic in the surface waters of the Ross Sea (Antarctica): Occurrence, distribution and characterization by FTIR[J]. Chemosphere,2017,175:391-400. doi: 10.1016/j.chemosphere.2017.02.024
|
[16] |
ZHANG K, XIONG X, HU H, et al. Occurrence and characteristics of microplastic pollution in Xiangxi Bay of Three Gorges Reservoir, China[J]. Environmental Science & Technology,2017,51(7):3794-3801.
|
[17] |
SU L, XUE Y, LI L, et al. Microplastics in Taihu Lake, China[J]. Environmental Pollution,2016,216:711-719. doi: 10.1016/j.envpol.2016.06.036
|
[18] |
MANI T, HAUK A, WALTER U, et al. Microplastics profile along the Rhine River[J]. Scientific Reports,2015,5:17988.
|
[19] |
YONKOS L T, FRIEDEL E A, PEREZ-REYES A C, et al. Microplastics in four estuarine rivers in the Chesapeake Bay, USA[J]. Environmental Science & Technology,2014,48(24):14195.
|
[20] |
FAURE F, DEMARS C, WIESER O, et al. Plastic pollution in Swiss surface waters: Nature and concentrations, interaction with pollutants[J]. Environmental Chemistry,2015,12(5):582-591. doi: 10.1071/EN14218
|
[21] |
MARTIN C, CORONA E, MAHADIK G A, et al. Adhesion to coral surface as a potential sink for marine microplastics[J]. Environmental Pollution,2019,255:113281. doi: 10.1016/j.envpol.2019.113281
|
[22] |
SONG C, QIU Y, LI S, et al. A novel concept of bicarbonate-carbon utilization via an absorption-microalgae hybrid process assisted with nutrient recycling from soybean wastewater[J]. Journal of Cleaner Production,2019,237:117864. doi: 10.1016/j.jclepro.2019.117864
|
[23] |
SONG C, LIU Z, WANG C, et al. Different interaction performance between microplastics and microalgae: The bio-elimination potential of Chlorella sp. L38 and Phaeodactylum tricornutum MASCC-0025[J]. Science of the Total Environment,2020,723:138146. doi: 10.1016/j.scitotenv.2020.138146
|
[24] |
PELLER J, NEVERS M B, BYAPPANAHALLI M, et al. Sequestration of microfibers and other microplastics by green algae, Cladophora, in the US Great Lakes[J]. Envi-ronmental Pollution,2021,276:116695. doi: 10.1016/j.envpol.2021.116695
|
[25] |
SANTANA M F M, DAWSON A L, MOTTI C A, et al. Ingestion and depuration of microplastics by a planktivorous coral reef fish, Pomacentrus amboinensis[J]. Frontiers in Environmental Science,2021,9:641135.
|
[26] |
CAPONE A, PETRILLO M, MISIC C. Ingestion and elimination of anthropogenic fibres and microplastic fragments by the European anchovy (Engraulis encrasicolus) of the NW Mediterranean Sea[J]. Marine Biology,2020,167(11):1-15.
|
[27] |
LENGAR Ž, KLUN K, DOGSA I, et al. Sequestration of polystyrene microplastics by jellyfish mucus[J]. Frontiers in Marine Science,2021,9:690749.
|
[28] |
BRÅTE I L N, BLÁZQUEZ M, BROOKS S J, et al. Weathering impacts the uptake of polyethylene microparticles from toothpaste in Mediterranean mussels (M. galloprovincialis)[J]. Science of the Total Environment,2018,626:1310-1318. doi: 10.1016/j.scitotenv.2018.01.141
|
[29] |
BULANNGA R B, SCHMIDT S. Uptake and accumulation of microplastic particles by two freshwater ciliates isolated from a local river in South Africa[J]. Environmental Research,2022,204:112123. doi: 10.1016/j.envres.2021.112123
|
[30] |
HUANG Z, WENG Y, SHEN Q, et al. Microplastic: A potential threat to human and animal health by interfering with the intestinal barrier function and changing the intestinal microenvironment[J]. Science of the Total Environment,2021,785:147365. doi: 10.1016/j.scitotenv.2021.147365
|
[31] |
BRAUN T, EHRLICH L, HENRICH W, et al. Detection of microplastic in human placenta and meconium in a clinical setting[J]. Pharmaceutics,2021,13(7):921-932. doi: 10.3390/pharmaceutics13070921
|
[32] |
NOR N H M, KOOI M, DIEPENS N J, et al. Lifetime accumulation of microplastic in children and adults[J]. Environmental Science & Technology,2021,55(8):5084-5096.
|
[33] |
刘慧. 功能化生物质复合材料的制备及其吸附水中砷的性能研究[D]. 南京: 南京林业大学, 2021.
LIU Hui. Study on the preparation of functional biomass composite material and the adsorption for arsenic removal from water[D]. Nanjing: Nanjing Forestry University, 2021(in Chinese).
|
[34] |
CHI N T L, ANTO S, AHAMED T S, et al. A review on biochar production techniques and biochar based catalyst for biofuel production from algae[J]. Fuel,2021,287:119411. doi: 10.1016/j.fuel.2020.119411
|
[35] |
MADADI R, BESTER K. Fungi and biochar applications in bioremediation of organic micropollutants from aquatic media[J]. Marine Pollution Bulletin,2021,166:112247. doi: 10.1016/j.marpolbul.2021.112247
|
[36] |
KUMAR M, DUTTA S, YOU S, et al. A critical review on biochar for enhancing biogas production from anaerobic digestion of food waste and sludge[J]. Journal of Cleaner Production,2021,305:127143. doi: 10.1016/j.jclepro.2021.127143
|
[37] |
ABUWATFA W H, AL-MUQBEL D, AL-OTHMAN A, et al. Insights into the removal of microplastics from water using biochar in the era of COVID-19: A mini review[J]. Case Studies in Chemical and Environmental Engineering,2021,4:100151. doi: 10.1016/j.cscee.2021.100151
|
[38] |
WANG Z, SEDIGHI M, LEA-LANGTON A. Filtration of microplastic spheres by biochar: Removal efficiency and immobilisation mechanisms[J]. Water Research,2020,184:116165. doi: 10.1016/j.watres.2020.116165
|
[39] |
SIIPOLA V, PFLUGMACHER S, ROMAR H, et al. Low-cost biochar adsorbents for water purification including microplastics removal[J]. Applied Sciences,2020,10(3):788-805. doi: 10.3390/app10030788
|
[40] |
GANIE Z A, KHANDELWAL N, TIWARI E, et al. Biochar-facilitated remediation of nanoplastic contaminated water: Effect of pyrolysis temperature induced surface modifications[J]. Journal of Hazardous Materials,2021,417:126096. doi: 10.1016/j.jhazmat.2021.126096
|
[41] |
MAGID A S I A, ISLAM M S, CHEN Y, et al. Enhanced adsorption of polystyrene nanoplastics (PSNPs) onto oxidized corncob biochar with high pyrolysis temperature[J]. Science of the Total Environment,2021,784:147115. doi: 10.1016/j.scitotenv.2021.147115
|
[42] |
SINGH N, KHANDELWAL N, GANIE Z A, et al. Eco-friendly magnetic biochar: An effective trap for nanoplastics of varying surface functionality and size in the aqueous envi-ronment[J]. Chemical Engineering Journal,2021,418:129405. doi: 10.1016/j.cej.2021.129405
|
[43] |
WANG J, SUN C, HUANG Q X, et al. Adsorption and thermal degradation of microplastics from aqueous solutions by Mg/Zn modified magnetic biochars[J]. Journal of Hazardous Materials,2021,419:126486. doi: 10.1016/j.jhazmat.2021.126486
|
[44] |
BOONMAHITTHISUD A, SOYKEABKAEW N, ONGTHIP L, et al. Review of the recent developments in all-cellulose nanocomposites: Properties and applications[J]. Carbohydrate Polymers,2022,286:119192.
|
[45] |
PRASAD S, SINGH A, KORRES N E, et al. Sustainable utilization of crop residues for energy generation: A life cycle assessment (LCA) perspective[J]. Bioresource Technology,2020,303:122964. doi: 10.1016/j.biortech.2020.122964
|
[46] |
蔡杰, 吕昂, 周金平, 等. 纤维素科学与材料[M]. 北京: 化学工业出版社, 2015: 345.
CAI Jie, LYU Ang, ZHOU Jinping, et al. Cellulose science and materials[M]. Beijing: Chemical Industry Press, 2015: 345(in Chinese).
|
[47] |
BATOOL A, VALIYAVEETTIL S. Surface functionalized cellulose fibers—A renewable adsorbent for removal of plastic nanoparticles from water[J]. Journal of Hazardous Materials,2021,413:125301. doi: 10.1016/j.jhazmat.2021.125301
|
[48] |
YEN P L, HSU C H, HUANG M L, et al. Removal of nano-sized polystyrene plastic from aqueous solutions using untreated coffee grounds[J]. Chemosphere,2022,286:131863. doi: 10.1016/j.chemosphere.2021.131863
|
[49] |
LEPPÄNEN I, LAPPALAINEN T, LOHTANDER T, et al. Capturing colloidal nano- and microplastics with plant-based nanocellulose networks[J]. Nature Communications,2022,13(1):1-12. doi: 10.1038/s41467-021-27699-2
|
[50] |
ZHUANG J, RONG N, WANG X, et al. Adsorption of small size microplastics based on cellulose nanofiber aerogel modified by quaternary ammonium salt in water[J]. Separation and Purification Technology,2022,291:121133.
|
[51] |
CHEN C C, WU Q J, WAN Z M, et al. Mildly processed chitin used in one-component drinking straws and single use materials: Strength, biodegradability and recyclability[J]. Chemical Engineering Journal,2022,442:136173. doi: 10.1016/j.cej.2022.136173
|
[52] |
EL KNIDRI H, BELAABED R, ADDAOU A, et al. Extraction, chemical modification and characterization of chitin and chitosan[J]. International Journal of Biological Macromolecules,2018,120:1181-1189. doi: 10.1016/j.ijbiomac.2018.08.139
|
[53] |
YANG J, CHEN X, ZHANG J, et al. Role of chitosan-based hydrogels in pollutants adsorption and freshwater harvesting: A critical review[J]. International Journal of Biological Macromolecules,2021,189:53-64. doi: 10.1016/j.ijbiomac.2021.08.047
|
[54] |
ANITHA A, SOWMYA S, KUMAR P T S, et al. Chitin and chitosan in selected biomedical applications[J]. Progress in Polymer Science,2014,39(9):1644-1667. doi: 10.1016/j.progpolymsci.2014.02.008
|
[55] |
SUN C, WANG Z, CHEN L, et al. Fabrication of robust and compressive chitin and graphene oxide sponges for removal of microplastics with different functional groups[J]. Chemical Engineering Journal,2020,393:124796. doi: 10.1016/j.cej.2020.124796
|
[56] |
SUN C, WANG Z, ZHENG H, et al. Biodegradable and reusable sponge materials made from chitin for efficient removal of microplastics[J]. Journal of Hazardous Materials,2021,420:126599. doi: 10.1016/j.jhazmat.2021.126599
|
[57] |
RISCH P, ADLHART C. A chitosan nanofiber sponge for oyster-inspired filtration of microplastics[J]. ACS Applied Polymer Materials,2021,3(9):4685-4694. doi: 10.1021/acsapm.1c00799
|
[58] |
林自明. 甲壳素/聚乙烯亚胺复合材料的制备及其对Cr(Ⅵ)、U(Ⅵ)的吸附行为和机理研究[D]. 南宁: 广西大学, 2021.
LIN Ziming. Preparation of Chitin/polyvinyl imine composite and its adsorption behavior and mechanism for Cr(VI) and U(VI)[D]. Nanning: Guangxi University, 2021(in Chinese).
|
[59] |
WANG Z, SUN C, LI F, et al. Fatigue resistance, reusable and biodegradable sponge materials from plant protein with rapid water adsorption capacity for microplastics removal[J]. Chemical Engineering Journal,2021,415:129006. doi: 10.1016/j.cej.2021.129006
|
[60] |
SUN M, CHEN W, FAN X, et al. Cooperative recyclable magnetic microsubmarines for oil and microplastics removal from water[J]. Applied Materials Today,2020,20:100682. doi: 10.1016/j.apmt.2020.100682
|