Volume 39 Issue 5
Mar.  2022
Turn off MathJax
Article Contents
GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001
Citation: GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 2172-2182. doi: 10.13801/j.cnki.fhclxb.20210615.001

Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research

doi: 10.13801/j.cnki.fhclxb.20210615.001
  • Received Date: 2021-05-06
  • Accepted Date: 2021-06-03
  • Rev Recd Date: 2021-05-26
  • Available Online: 2021-06-15
  • Publish Date: 2022-03-23
  • Graphene oxide (GO) and multi-walled carbon nanotubes (MWCNTs) are widely used in rubber fillers due to their good mechanical properties and thermal conductivity. In order to increase the vulcanization efficiency and improve the physical properties of natural rubber, a GO/MWCNTs rubber composite was prepared by mixing graphene oxide and multi-walled carbon nanotubes with rubber in different proportions. Through testing the phy-sical properties of the rubber compound and the vulcanized rubber, it is concluded that there is a synergistic effect between MWCNTs filler and GO filler, and different ratios of GO and MWCNTs have different effects on the performance of the rubber compound. When MWCNTs filler is added quantitatively at 6wt%, with the increase of GO content: the maximum torque MH of the vulcanized rubber and the crosslinking density ΔM value increased; the scorch time tc10 and the normal vulcanization time tc90 decreased first, and tc90 rose slightly after 3wt%. When the content of GO and MWCNTs are 3wt% and 6wt%, the improvement of vulcanization efficiency is most obvious; when the two are added at 6wt% at the same time, the thermal conductivity of the compound and the vulcanized rubber are increased by 25.1% and 23.3% respectively; the 100% of the vulcanized rubber is fixed. Tensile stress and 300% constant elongation stress have a rising trend, and slightly decrease after 3wt%. Taken together, when GO and MWCNTs are added at 3wt% and 6wt%, respectively, the filler particles have the best reinforcement effect on the rubber. Its good thermal conductivity enhances the uniformity of the vulcanization reaction and realizes energy saving and consumption reduction in the vulcanization process.

     

  • loading
  • [1]
    SHAHEDUR Rahman Mir. 高性能抗氧化剂的抗衰老机理及应用性能评价研究[D]. 北京: 北京化工大学, 2020.

    SHAHEDUR Rahman Mir. Study on anti-agin mechanism and application performace evaluation of high-perfor-mance antioxidants[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [2]
    郭飞, 张兆想, 宋炜, 等. 橡胶硫化过程数值模拟研究进展[J]. 化工学报, 2020, 71(8):3393-3402.

    GUO Fei, ZHANG Zhaoxiang, SONG Wei, et al. Research progress in numerical simulation of rubber vulcanization process[J]. CIESC Journal,2020,71(8):3393-3402(in Chinese).
    [3]
    樊建军. 巨型工程轮胎抗硫化返原研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    FAN Jianjun. Research on the anti-reversion of giant engi-neering tires[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [4]
    粟本龙. 巨型子午线轮胎硫化仿真研究[D]. 哈尔滨: 哈尔滨工业大学, 2010.

    SU Benlong. Research on the vulcanization simulation of giant radial tires[D]. Harbin: Harbin Institute of Technology, 2010(in Chinese).
    [5]
    WAQAS Ahmed Raza. 石墨烯和多壁碳纳米管加固高温硫化硅橡胶的研究[D]. 山东: 山东大学, 2018.

    WAQAS Ahmed Raza. Research on reinforcement of high temperature vulcanized silicone rubber by graphene and multi-walled carbon nanotubes[D]. Shandong: Shandong University, 2018(in Chinese).
    [6]
    IMTIAZ S, SIDDIQ M, KAUSAR A, et al. A review featuring fabrication, properties and applications of carbon nanotubes (CNTs) reinforced polymer and epoxy nanocomposites[J]. Chinese Journal of Polymer Science,2018,36(4):445-461. doi: 10.1007/s10118-018-2045-7
    [7]
    LI X, TAO Y, LI F, et al. Efficient preparation and characterization of functional graphene with versatile applicability[J]. Journal of Harbin Institute of Technology,2016,23(3):1-29.
    [8]
    FU S, SUN Z, HUANG P, et al. Some basic aspects of polymer nanocomposites: A critical review[J]. Nano Materials Science,2019,1(1):2-30. doi: 10.1016/j.nanoms.2019.02.006
    [9]
    KUESENG K, JACOB K I. Natural rubber nanocomposites with SiC nanoparticles and carbon nanotubes[J]. European Polymer Journal,2005,42(1):220-227.
    [10]
    FALCO A D, GOYANES S, RUBIOLO G H, et al. Carbon nanotubes as reinforcement of styrene-butadiene rubber[J]. Applied Surface Science,2007,254(1):262-265.
    [11]
    DAS A, STÖCKELHUBER K W, JURK R, et al. Modified and unmodified multiwalled carbon nanotubes in high perfor-mance solution styrene-butadiene and butadiene rubber blends[J]. Polymer,2008,49(24):5276-5283.
    [12]
    SADASIVUNI K K, PONNAMMA D, THOMAS S, et al. Evolution from graphite to graphene elastomer composites[J]. Progress in Polymer Science,2014,39(4):749-780.
    [13]
    谢苗. 氧化石墨烯/碳纳米管/丁基胶乳复合材料的湿法制备机理及实验研究[D]. 青岛: 青岛科技大学, 2020.

    XIE Miao. The wet preparation mechanism and experimental study of graphene oxide/carbon nanotube/butyl latex composites[D]. Qingdao: Qingdao University of Science and Technology, 2020(in Chinese).
    [14]
    ALLAHBAKHSH A, MAZINANI S, KALAEE M R, et al. Cure kinetics and chemorheology of EPDM/graphene oxide nanocomposites[J]. Thermochimica Acta,2013,563:22-32.
    [15]
    YANG B, ZHANG S H, ZOU Y F, et al. Improving the thermal conductivity and mechanical properties of two component room temperature vulcanized silicone rubber by filling with hydrophobically modified SiO2-graphene nanohybrids[J]. Chinese Journal of Polymer Science,2019,37(2):189-196. doi: 10.1007/s10118-019-2185-4
    [16]
    RAM R, RAHAMAN M, KHASTGIR D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: Modelling of DC conductivity[J]. Composites Part A: Applied Science and Manufacturing, 2015, 69: 30-39.
    [17]
    WANG X Y, YAO X, MÜLLEN K. Polycyclic aromatic hydrocarbons in the graphene era[J]. Science China(Chemistry),2019,62(9):1099-1144.
    [18]
    许宗超. 高强度、抗疲劳石墨烯/橡胶纳米复合材料的设计与制备[D]. 北京: 北京化工大学, 2020.

    XU Zongchao. Design and preparation of high-strength, fatigue-resistant graphene/rubber nanocomposites[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [19]
    中国国家标准化管理委员会. 橡胶用无转子硫化仪测定硫化特性: GB/T 16584—1996[S]. 北京: 中国标准出版社, 1996.

    Standardization Administration of the People's Republic of China. Determination of vulcanization characteristics of rubber without rotor vulcanizer: GB/T 16584—1996[S]. Beijing: China Standards Press, 1996(in Chinese).
    [20]
    何燕, 马连湘. 用激光导热仪测定炭黑填充橡胶的导热系数[J]. 合成橡胶工业, 2008(4):255-258. doi: 10.3969/j.issn.1000-1255.2008.04.003

    HE Yan, MA Lianxiang. Measuring the thermal conducti-vity of carbon black filled rubber with a laser thermal conductivity meter[J]. Synthetic Rubber Industry,2008(4):255-258(in Chinese). doi: 10.3969/j.issn.1000-1255.2008.04.003
    [21]
    中国国家标准化管理委员会. 未硫化橡胶 用圆盘剪切黏度计进行测定 第1部分—门尼黏度的测定: GB/T 1232.1—2016[S]. 北京: 中国标准出版社, 2016.

    Standardization Administration of the People's Republic of China. Determination of unsulfurized rubber with disc shear viscometer Part 1—Determination of Mooney visco-sity: GB/T 1232.1—2016[S]. Beijing: China Standards Press, 2016(in Chinese).
    [22]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [23]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶压入硬度试验方法 第1部分—邵氏硬度计法(邵氏硬度): GB/T 531.1—2008[S]. 北京: 中国标准出版社, 2008.

    Standardization Administration of the People's Republic of China. Test method for pressing hardness of vulcanized rubber or thermoplastic rubber Part 1—Shore hardness tester (Shore hardness): GB/T 531.1—2008[S]. Beijing: China Standards Press, 2008(in Chinese).
    [24]
    BHATTACHARYA M, BHOWMICK A K. Synergy in carbon black-filled natural rubber nanocomposites:Part I— Mechanical, dynamic mechanical properties, and morphology[J]. Journal of Materials Science,2010,45(22):6126-6138.
    [25]
    李京超. 三维导热网络的构筑及其橡胶复合材料研究[D]. 北京: 北京化工大学, 2020.

    LI Jingchao. Construction of three-dimensional thermal network and its rubber composite materials[D]. Beijing: Beijing University of Chemical Technology, 2020(in Chinese).
    [26]
    张小璇. 导热硅橡胶的制备与性能研究[D]. 济南: 山东大学, 2020.

    ZHANG Xiaoxuan. Preparation and properties of thermally conductive silicone rubber[D]. Jinan: Shandong University, 2020(in Chinese).
    [27]
    宋仕强. 石墨烯衍生物及其丙烯酸酯类共聚物和丁苯橡胶复合材料的结构和性能研究[D]. 上海: 上海交通大学, 2018.

    SONG Shiqiang. Research on the structure and properties of graphene derivatives and their acrylate copolymers and styrene butadiene rubber composites[D]. Shanghai: Shanghai Jiaotong University, 2018(in Chinese).
    [28]
    DANG Z M, ZHENG M S, ZHA J W. 1D/2D Carbon nanomaterial-polymer dielectric composites with high permittivity for power energy storage applications[J]. Small,2016,12(13):1688-1701.
    [29]
    SUN L. Structure and synthesis of graphene oxide[J]. Chinese Journal of Chemical Engineering,2019,27(10):2251-2260. doi: 10.1016/j.cjche.2019.05.003
    [30]
    ZHENG C, ZHU J, YANG C, et al. The art of two-dimensional soft nanomaterials[J]. Science China(Chemistry),2019,62(9):1145-1193.
    [31]
    SARMAD Ali. 聚乙烯改性吹塑薄膜的结构演变和表面性质研究[D]. 安徽: 中国科学技术大学, 2018.

    SARMAD Ali. Study of the structure evolution and surface properties of the polyethylene modified blown films[D]. Anhui: University of Science and Technology of China, 2018(in Chinese).
    [32]
    CHEN H Y, GINZBURG V V, YANG J, et al. Thermal conductivity of polymer-based composites: Fundamentals and applications[J]. Progress in Polymer Science, 2016, 59: 41-85.
    [33]
    唐淼. 聚合物弹性体材料网络结构对流变学行为和力学性能影响的研究[D]. 合肥: 中国科学技术大学, 2017.

    TANG Miao. Research on the effect of polymer elastomer material network structure on rheological behavior and mechanical properties[D]. Hefei: University of Science and Technology of China, 2017(in Chinese).
    [34]
    张松波, 周竞发, 刘月星, 等. 氧化石墨烯对炭黑/天然橡胶复合材料耐疲劳性能的影响[J]. 橡胶工业, 2018, 65(11):1205-1209.

    ZHANG Songbo, ZHOU Jingfa, LIU Yuexing, et al. Effect of graphene oxide on fatigue resistance of carbon black/natural rubber composites[J]. Rubber Industry,2018,65(11):1205-1209(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (1112) PDF downloads(99) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return