TANG Qi, HU Shiteng, WANG Xuemeng, et al. Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3928-3938. DOI: 10.13801/j.cnki.fhclxb.20220919.002
Citation: TANG Qi, HU Shiteng, WANG Xuemeng, et al. Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties[J]. Acta Materiae Compositae Sinica, 2023, 40(7): 3928-3938. DOI: 10.13801/j.cnki.fhclxb.20220919.002

Preparation of multi-walled carbon nanotubes@graphene/thermoplastic vulcanizate composites and study on its thermoelectric properties

Funds: Applied Research Project Supported by Qingdao Postdoctoral Research Center in 2021 (040304031060092)
More Information
  • Received Date: August 10, 2022
  • Revised Date: September 06, 2022
  • Accepted Date: September 09, 2022
  • Available Online: September 21, 2022
  • This work mainly used the synergistic effect of one- and two-dimensional fillers (Multi-walled carbon nanotubes (MWCNTs)@graphene (GE)) to improve the thermoelectric and mechanical properties of thermoplastic vulcanizate (TPV). MWCNTs@GE/polypropylene-maleic anhydride (PP-MA) masterbatch were first prepared by melt-graft blending. The structure, crystallinity and microstructure of MWCNTs@GE/PP-MA masterbatch were characterized. Then MWCNTs@GE/TPV composites with unique network structure were prepared by dynamic vulcanization method. The effects of the amount of MWCNTs@GE on the phase structure, electrical conductivity, thermal conductivity and mechanical properties of MWCNTs@GE/TPV composites were studied. The results show that the combination of MWCNTs and GE has a synergistic effect and can be used as nucleating agent to improve crystallization peak temperature (Tc) and crystallinity of PP (Xc) and reduce crystal size of the PP crystal plane (LCrystallite) in the crystallization process, compared with the masterbatch prepared with single filler. In the MWCNTs@GE/PP-MA masterbatch, MWCNTs and GE are uniformly dispersed in PP-MA and have strong bonding force with the matrix. The MWCNTs@GE/TPV composites show an obvious "island" structure, and the cross-linked butyl rubber (IIR) rubber is dispersed in the PP-MA phase as micron size particles. MWCNTs and GE are uniformly dispersed in the continuous phase PP-MA, and the distance between MWCNTs and GE is less than 1 µm, forming the MWCNTs@GE network structure. When the content of MWCNTs@GE in MWCNTs@GE/TPV composites reaches 3wt%, the alternating current (AC) electrical conductivity, thermal conductivity, elongation at break and tensile strength reach the best value.
  • [1]
    LI X, KANG H L, LUO Q L, et al. Preparation and properties of a novel poly(lactic-acid)-based thermoplastic vulcanizate from both experiments and simulations[J]. RSC Advances,2022,12(16):9534-9542. DOI: 10.1039/D2RA00286H
    [2]
    HUANG Y Y, LIU Z, XU H Y, et al. Conductive thermoplastic vulcanizates based on carbon black-filled bromo-isobutylene-isoprene rubber (BIIR)/polypropylene (PP)[J]. Reviews on Advanced Materials Science,2021,60(1):303-312. DOI: 10.1515/rams-2021-0013
    [3]
    LI M C, WANG Y, SHEN C H, et al. PP/POE thermoplastic elastomer prepared by dynamic vulcanization and its flame retardant modification[J]. Journal of Elastomers & Plastics,2022,54(2):209-224.
    [4]
    汤琦, 颜桐桐, 孙豪, 等. 动态硫化制备多壁碳纳米管/热塑性硫化胶复合材料的相态结构及热电效应[J]. 材料导报, 2021, 35(6):6206-6211. DOI: 10.11896/cldb.19110144

    TANG Qi, YAN Tongtong, SUN Hao, et al. Phase structure and thermo-electric effect of multi-walled carbon nanotubes/thermoplastic vulcanizate composites prepared by dynamic vulcanization[J]. Materials Reports,2021,35(6):6206-6211(in Chinese). DOI: 10.11896/cldb.19110144
    [5]
    MA L F, BAO R Y, DOU R, et al. Conductive thermoplastic vulcanizates (TPVs) based on polypropylene (PP)/ethylene-propylene-diene rubber (EPDM) blend: From strain sensor to highly stretchable conductor[J]. Composites Science and Technology,2016,128:176-184. DOI: 10.1016/j.compscitech.2016.04.001
    [6]
    YU J, CHOI H K, KIM H S, et al. Synergistic effect of hybrid graphene nanoplatelet and multi-walled carbon nanotube fillers on the thermal conductivity of polymer composites and theoretical modeling of the synergistic effect.[J]. Composites Part A: Applied Science and Manufacturing,2016,88:79-85. DOI: 10.1016/j.compositesa.2016.05.022
    [7]
    高浩, 时文欣, 宋维浩, 等. 氧化石墨烯/多壁碳纳米管影响天然橡胶性能的实验研究[J]. 复合材料学报, 2022, 39(5):2172-2182. DOI: 10.13801/j.cnki.fhclxb.20210615.001

    GAO Hao, SHI Wenxin, SONG Weihao, et al. Effect of graphene oxide/multi-walled carbon nanotubes on the properties of natural rubber and experimental research[J]. Acta Materiae Compositae Sinica,2022,39(5):2172-2182(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20210615.001
    [8]
    KHODABANDELOU M, AGHJEH M K. Impact behavior of CNT-filled PP/EPDM blends: Effect of dynamic vulcanization and PP-g-MA compatibilizer[J]. Polymer Bulletin,2016,73(6):1607-1626. DOI: 10.1007/s00289-015-1566-2
    [9]
    YAN N, XIA H, WU J, et al. Compatibilization of natural rubber/high density polyethylene thermoplastic vulcanizate with graphene oxide through ultrasonically assisted latex mixing[J]. Journal of Applied Polymer Science,2012,15:933-941.
    [10]
    中国国家标准化管理委员会. 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定: GB/T 528—2009[S]. 北京: 中国标准出版社, 2009.

    Standardization Administration of the People's Republic of China. Determination of tensile stress strain properties of vulcanized rubber or thermoplastic rubber: GB/T 528—2009[S]. Beijing: China Standards Press, 2009(in Chinese).
    [11]
    MISHRA J K, RYOU J H, KIM G H, et al. Preparation and properties of a new thermoplastic vulcanizate (TPV)/organoclay nanocomposite using maleic anhydride functionalized polypropylene as a compatibilizer[J]. Materials Letters,2004,58(27):3481-3485.
    [12]
    HSIAO M C, LIAO S H, LIN Y F, et al. Preparation and characterization of polypropylene-graft-thermally reduced graphite oxide with an improved compatibility with polypropylene-based nanocomposite[J]. Nanoscale,2011,3:1516-1522. DOI: 10.1039/c0nr00981d
    [13]
    YUAN B, BAO C, SONG L, et al. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties[J]. Chemical Engineering Journal,2014,237:411-420. DOI: 10.1016/j.cej.2013.10.030
    [14]
    WANG D R, ZHANG X M, ZHA J W, et al. Dielectric properties of reduced graphene oxide/polypropylene composites with ultralow percolation threshold[J]. Polymer,2013,54(7):1916-1922. DOI: 10.1016/j.polymer.2013.02.012
    [15]
    LI C Q, ZHA J W, LONG H Q, et al. Mechanical and dielectric properties of graphene incorporated polypropylene nanocomposites using polypropylene-graft-maleic anhydride as a compatibilizer[J]. Composites Science and Technology,2017,153:111-118. DOI: 10.1016/j.compscitech.2017.10.015
    [16]
    SONG P G, CAO Z H, CAI Y Z, et al. Fabrication of exfoliated graphene-based polypropylene nanocomposites with enhanced mechanical and thermal properties[J]. Polymer,2011,52(18):4001-4010. DOI: 10.1016/j.polymer.2011.06.045
    [17]
    MOHIUDDIN T M G, LOMBARDO A, NAIR R R, et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grueneisen parameters, and sample orientation[J]. Physical Review,2009,79(20):205433. DOI: 10.1103/PhysRevB.79.205433
    [18]
    JONES A T, AIZLEWOOD J M, BECKETT D R. Crystalline forms of isotactic polypropylene[J]. Macromolecular Chemistry & Physics,1964,75(1):134-158.
    [19]
    LIANG J J, HUANG Y, ZHANG L, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites[J]. Advanced Functional Materials,2009,19(14):2297-2302. DOI: 10.1002/adfm.200801776
    [20]
    LEE G W, JAGANNATHAN S, CHAE H G, et al. Carbon nanotube dispersion and exfoliation in polypropylene and structure and properties of the resulting composites[J]. Polymer,2008,49(7):1831-1840. DOI: 10.1016/j.polymer.2008.02.029
    [21]
    FRANTIŠEK K, JOSEF P, PETR P, et al. Controlled reactive modification of polypropylene with maleic anhydride via solvent-free technique[J]. Polymer Degradation & Stability,2019,168:1-8.
    [22]
    SHI Y Y, YANG J H, HUANG T, et al. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity[J]. Composites Part B: Engineering,2013,55:463-469. DOI: 10.1016/j.compositesb.2013.07.012
    [23]
    LIU S T, TIAN M, ZHANG L Q, et al. Tailoring dielectric properties of polymer composites by controlling alignment of carbon nanotubes[J]. Journal of Materials Science,2016,51(5):2616-2626. DOI: 10.1007/s10853-015-9575-y
    [24]
    TIAN M, YAN B Y, YAO Y, et al. Largely improved actuation strain at low electric field of dielectric elastomer by combining disrupting hydrogen bonds with ionic conductivity[J]. Journal of Materials Chemistry C,2014,2(39):8388-8397. DOI: 10.1039/C4TC01140F
    [25]
    HUY T A, LUEPKE T, RADUSCH H J. Characterization of the deformation behavior of dynamic vulcanizates by FTIR spectroscopy[J]. Journal of Applied Polymer Science,2001,80(2):148-158. DOI: 10.1002/1097-4628(20010411)80:2<148::AID-APP1083>3.0.CO;2-W
  • Related Articles

    [1]LUO Peidong, ZHAO Cheng, LUO Qiuping, ZHANG Qiang, YAN Feifei. Preparation and application of micron-sized ZnS-Qds@ polysiloxane core-shell light diffusion hybrid microspheres[J]. Acta Materiae Compositae Sinica, 2023, 40(3): 1438-1445. DOI: 10.13801/j.cnki.fhclxb.20220516.005
    [2]HOU Gaoyuan, LI Guanhui, HU Zhaoxiang, LI Yujie, ZHANG Dejian, CUI Jinyi, FANG Zhiqiang. Preparation, properties and application of highly hazy and transparent cellulose films for solar cells[J]. Acta Materiae Compositae Sinica, 2022, 39(5): 1907-1923. DOI: 10.13801/j.cnki.fhclxb.20210609.002
    [3]XU Shihua, FANG Yiqun, WANG Qingwen. Non-isothermal crystallization kinetics of wood powder/low melting point polyamide 6 composites[J]. Acta Materiae Compositae Sinica, 2021, 38(7): 2218-2223. DOI: 10.13801/j.cnki.fhclxb.20200902.002
    [4]JIA Lingping, CHEN Zuoyan, WANG Yingping, AN Xingcai. Adsorption and photocatalytic properties of V-N-TiO2/attapulgite and V-N-TiO2/glass beads composites[J]. Acta Materiae Compositae Sinica, 2019, 36(3): 693-700. DOI: 10.13801/j.cnki.fhclxb.20180704.001
    [5]SUN Zhipeng, WANG Huashan, HAN Shixin. Preparation and transmittance of nano-SiO2/PMMA transparent composites[J]. Acta Materiae Compositae Sinica, 2017, 34(7): 1423-1429. DOI: 10.13801/j.cnki.fhclxb.20161024.006
    [6]ZHENG Jingzhi, ZHOU Xingping, XIE Xiaolin. Non-isothermal crystallization kinetics of polypropylene containing silica hybrid particles as fillers[J]. Acta Materiae Compositae Sinica, 2013, 30(2): 18-23.
    [7]LIU Jianhua, ZHAO Liang, LI Songmei, HU Jianping, GONG Zhaohe. Effect of salt spray on mechanical properties of glass f iber reinforced polymer composites[J]. Acta Materiae Compositae Sinica, 2007, 24(3): 18-22.
    [8]JI Guangming, TAO Jie, WANG Tao, YANG Bingpeng. INVESTIGATION ON THE MECHANICAL PROPERTIES OF NANO-TiO2/PP COMPOSITES[J]. Acta Materiae Compositae Sinica, 2005, 22(5): 100-106.
    [9]ZHENG Shunxing, LI Cheng, FAN Zhenlu, HAN Zuoxiang, LU Zhaoping. PREPARATION AND TRANSMITTANCES OF TRANSPARENTSILICA/ PHENOLIC RESIN HYBRID MATERIALS[J]. Acta Materiae Compositae Sinica, 2005, 22(1): 22-26.
    [10]KOU Sheng-zhong, XU Guang-ji, DING Yu-tian, SU Pei-hua. KINETIC MECHANISM OF THE XD REACTION IN Al-TiO2-C SYSTEM[J]. Acta Materiae Compositae Sinica, 2001, 18(4): 115-118.
  • Cited by

    Periodical cited type(1)

    1. 杨元林,李英,陈丽佳,牛连斌. 钙钛矿太阳能电池中顶电极的研究进展. 功能材料. 2022(07): 7040-7057 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (899) PDF downloads (67) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return