Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHU Deju, TANG Hao. Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002
Citation: ZHU Deju, TANG Hao. Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6260-6274. doi: 10.13801/j.cnki.fhclxb.20230222.002

Influence of short steel fiber on mechanical properties of carbon textile reinforced concrete under low-cycle fatigue loading

doi: 10.13801/j.cnki.fhclxb.20230222.002
Funds:  National Natural Science Foundation of China-Shandong Joint Fund (U1806225)
  • Received Date: 2022-12-15
  • Accepted Date: 2023-02-11
  • Rev Recd Date: 2023-01-15
  • Available Online: 2023-02-22
  • Publish Date: 2023-11-01
  • In order to study the influence of the short steel fiber on the mechanical properties of carbon textile reinforced concrete (C-TRC) under low-cycle fatigue loading, low-cycle fatigue loading test and quasi-static tensile tests before and after fatigue loading were conducted on specimens with various contents of short steel fiber (0vol%, 0.5vol% and 1.0vol%) by a universal testing machine, and distributions of crack and strain were obtained by digital image correlation (DIC) method. The results show that the addition of short steel fiber can increase the tensile strength, the Young’s modulus and toughness of C-TRC, reduce the energy dissipation and residual accumulated strain and increase the crack number and crack width. Fatigue load can reduce the rigidity, tensile strength, peak strain, and toughness, and accelerate the destruction of C-TRC. The addition of short steel fiber can reduce the property degradation caused by fatigue loading, and the 0.5vol% addition has the best enhancement effect. The strength degradation model was modified based on the existing residual strength-residual stiffness coupled model and experimental data, The modified model is used to fit the experimental data and be compared with the existing model. The results show that the modified model is more consistent with the experimental data. These findings will be available for the fatigue performance evaluation of textile reinforced concrete (TRC).


  • loading
  • [1]
    NAAMAN A. Textile reinforced cement composites: Competitive status and research directions[C]//BRAMESHUBER W. Proceedings of the International RILEM Conference on Material Science. France: RILEM Publications, 2010: 3-22.
    BRAMESHUBER W. Textile reinforced concrete-State-of-the-art report of RILEM TC 201-TRC[M]. Paris: RILEM Publications SARL, 2006: 11-27.
    刘赛, 朱德举, 李安令. 织物增强混凝土的研究与应用进展[J]. 建筑科学与工程学报, 2017, 34(5):134-146. doi: 10.3969/j.issn.1673-2049.2017.05.015

    LIU Sai, ZHU Deju, LI Anling. Research and application progress of textile reinforced concrete[J]. Journal of Architecture and Civil Engineering,2017,34(5):134-146(in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.015
    YAN L B, KASAL B, HUANG L. A review of recent research on the use of cellulosic fibres, their fibre fabric reinforced cementitious, geo-polymer and polymer composites in civil engineering[J]. Composites Part B: Engineering,2016,92:94-132. doi: 10.1016/j.compositesb.2016.02.002
    ZASTRAU B, LEPENIES I G, RICHTER M. On the multi scale modeling of textile reinforced concrete[J]. Technische Mechanik,2008,1:53-63.
    ZHANG Y F, YANG W L, LIU H, et al. Effect of interfacial strength on the flexural behavior of glass fiber reinforced polymer (GFRP) reinforced concrete beam[J]. Journal of Wuhan University of Technology,2015,30(5):1001-1007. doi: 10.1007/s11595-015-1264-9
    NANNI A. FRCM strengthening-A new tool in the concrete and masonry repair toolbox, concrete international[J]. Des Construct,2012,34:43-49.
    GHIASSI B, MARCARI G, OLIVEIRA D V, et al. Numerical analysis of bond behavior between masonry bricks and composite materials[J]. Engineering Structures,2012,43:210-220. doi: 10.1016/j.engstruct.2012.05.022
    BIELAK J, ADAM V, HEGGER J, et al. Shear capacity of textile-reinforced concrete slabs without shear reinforcement[J]. Applied Sciences,2019,9(7):1382. doi: 10.3390/app9071382
    HÄUßLER-COMBE U, HARTIG J. Bond and failure mechanisms of textile reinforced concrete (TRC) under uniaxial tensile loading[J]. Cement and Concrete Composites,2007,29(4):279-289. doi: 10.1016/j.cemconcomp.2006.12.012
    CAROZZI F G, MILANI G, POGGI C. Mechanical properties and numerical modeling of fabric reinforced cementitious matrix (FRCM) systems for strengthening of masonry structures[J]. Composite Structures,2014,107:711-725. doi: 10.1016/j.compstruct.2013.08.026
    TELLO N, ALHOUBI Y, ABED F, et al. Circular and square columns strengthened with FRCM under concentric load[J]. Composite Structures,2021,255:113000. doi: 10.1016/j.compstruct.2020.113000
    FURTADO A, RODRIGUES H, ARÊDE A, et al. The use of textile-reinforced mortar as a strengthening technique for the infill walls out-of-plane behaviour[J]. Composite Structures,2021,255:113029. doi: 10.1016/j.compstruct.2020.113029
    SHAMS A, HEGGER J, HORSTMANN M. An analytical model for sandwich panels made of textile-reinforced concrete[J]. Construction and Building Materials,2014,64:451-459. doi: 10.1016/j.conbuildmat.2014.04.025
    CURBACH M, GRAF W, JESSE D, et al. Segmental textile reinrorced concrete bridge design, manufacturing and numerical simulation[J]. Beton-Und Stahlbetonbau,2007,102(6):342-352. doi: 10.1002/best.200700550
    REMPEL S, KULAS C, WILL N, et al. Extremely light and slender precast pedestrian-bridge made out of textile-reinforced concrete (TRC)[C]//HORDIJK, DIRK A, MLADENA L. High Tech Concrete: Where Technology and Engineering Meet. The Netherlands: Springer International Publishing, 2018: 2530-2537.
    MESTICOU Z, BUI L, JUNES A, et al. Experimental investigation of tensile fatigue behaviour of textile-reinforced concrete (TRC): Effect of fatigue load and strain rate[J]. Composite Structures,2017,160:1136-1146. doi: 10.1016/j.compstruct.2016.11.009
    DE MUNCK M, TYSMANS T, WASTIELS J, et al. Fatigue behaviour of textile reinforced cementitious composites and their application in sandwich elements[J]. Applied Sciences,2019,9(7):1293. doi: 10.3390/app9071293
    CONTAMINE R, SI LARBI A, HAMELIN P. Contribution to direct tensile testing of textile reinforced concrete (TRC) composites[J]. Materials Science and Engineering: A,2011,528(29):8589-8598.
    MASHIMA M, HANNANT D J, KEER J G. Tensile properties of polypropylene reinforced cement with different fiber orientations[J]. ACI Materials Journal,1990,87(2):172-178.
    HEGGER J, WILL N, BRUCKERMANN O, et al. Load-bearing behaviour and simulation of textile reinforced concrete[J]. Materials and Structures, 2006, 39: 765-776.
    朱德举, 李新亮, 李安令. 经纬向纤维体积分数对耐碱玻璃纤维织物增强混凝土拉伸力学性能的影响[J]. 复合材料学报, 2022, 39(1):322-334.

    ZHU Deju, LI Xinliang, LI Anling. Influence of warp and weft fiber volume fractions on tensile mechanical properties of alkali-resistant glass textile reinforced concrete[J]. Acta Materiae Compositae Sinica,2022,39(1):322-334(in Chinese).
    ZHU D J, LIU S, YAO Y M, et al. Effects of short fiber and pre-tension on the tensile behavior of basalt textile reinforced concrete[J]. Cement and Concrete Composites,2019,96:33-45. doi: 10.1016/j.cemconcomp.2018.11.015
    WANG W J, ZHANG X J, CHOU W N, et al. Strain rate effect on the dynamic tensile behaviour of flax fibre reinforced polymer[J]. Composite Structures,2018,200:135-143. doi: 10.1016/j.compstruct.2018.05.109
    朱德举, 李高升. 短切纤维及预应力对玄武岩织物增强水泥基复合材料拉伸力学性能的影响[J]. 复合材料学报, 2017, 34(11):2631-2641. doi: 10.13801/j.cnki.fhclxb.20170301.003

    ZHU Deju, LI Gaosheng. Effect of short fibers and prestress on the tensile mechanical properties of basalt textile reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(11):2631-2641(in Chinese). doi: 10.13801/j.cnki.fhclxb.20170301.003
    SILVA F DE A, BUTLER M, MECHTCHERINE V, et al. Strain rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading[J]. Materials Science and Engineering: A,2011,528(3):1727-1734. doi: 10.1016/j.msea.2010.11.014
    JUN P, MECHTCHERINE V. Behaviour of strain-hardening cement-based composites (SHCC) under monotonic and cyclic tensile loading: Part 1–Experimental investigations[J]. Cement and Concrete Composites,2010,32(10):801-809. doi: 10.1016/j.cemconcomp.2010.07.019
    刘赛, 朱德举, 李安令, 等. 应变率和温度对耐碱玻璃纤维织物增强水泥基复合材料弯曲力学行为的影响[J]. 复合材料学报, 2017, 34(3):675-683. doi: 10.13801/j.cnki.fhclxb.20160531.001

    LIU Sai, ZHU Deju, LI Anling, et al. Effects of strain rate and temperature on the flexural mechanical properties of alkali-resistant glass fabric reinforced cementitious matrix composite[J]. Acta Materiae Compositae Sinica,2017,34(3):675-683(in Chinese). doi: 10.13801/j.cnki.fhclxb.20160531.001
    BARHUM R, MECHTCHERINE V. Effect of short, dispersed glass and carbon fibres on the behaviour of textile-reinforced concrete under tensile loading[J]. Engineering Fracture Mechanics,2012,92:56-71. doi: 10.1016/j.engfracmech.2012.06.001
    BARHUM R, MECHTCHERINE V. Influence of short dispersed and short integral glass fibres on the mechanical behaviour of textile-reinforced concrete[J]. Materials and Structures,2013,46(4):557-572. doi: 10.1617/s11527-012-9913-3
    CAROZZI F G, POGGI C. Mechanical properties and debonding strength of fabric reinforced cementitious matrix (FRCM) systems for masonry strengthening[J]. Compo-sites Part B: Engineering,2015,70:215-230. doi: 10.1016/j.compositesb.2014.10.056
    LEPENIES I, MEYER C, SCHORN H, et al. Modeling of load transfer behavior of AR-glass-rovings in textile reinforced concrete: ACI SP 244-7[S]. Farmington Hills: American Concrete Institute, 2007.
    宗俊达, 姚卫星. FRP复合材料剩余刚度退化复合模型[J]. 复合材料学报, 2016, 33(2):280-286.

    ZONG Junda, YAO Weixing. Compound model of residual stiffness degradation for FRP composites[J]. Acta Materiae Compositae Sinica,2016,33(2):280-286(in Chinese).
    WHITWORTH H A. Modeling stiffness reduction of graphite/epoxy composite laminates[J]. Journal of Composite Materials,1987,21(4):362-372. doi: 10.1177/002199838702100405
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(10)

    Article Metrics

    Article views (497) PDF downloads(25) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint