Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
WANG Tiantian, WANG Yu, LIANG Wenjin, et al. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001
Citation: WANG Tiantian, WANG Yu, LIANG Wenjin, et al. Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6194-6201. doi: 10.13801/j.cnki.fhclxb.20230120.001

Preparation and electrocatalytic oxygen evolution performance of CoWO4/NC composites

doi: 10.13801/j.cnki.fhclxb.20230120.001
Funds:  Taishan Scholar Program of Shandong Province (ts201712045)
  • Received Date: 2022-12-20
  • Accepted Date: 2023-01-13
  • Rev Recd Date: 2023-01-09
  • Available Online: 2023-01-30
  • Publish Date: 2023-11-01
  • Transition metal-based electrocatalysts with abundant reserves and low cost have been widely studied as potential substitutes for efficient oxygen evolution reaction (OER) precious metal electrocatalysts, but there are still problems of poor activity and conductivity. Here, a nitrogen-doped carbon (NC) supported CoWO4 (CoWO4/NC) catalyst with abundant oxygen vacancy was prepared by the pyrolysis of W/Co-ZIF precursor. The feeding ratio and calcination temperature of the catalyst were explored. OER performance in alkaline medium was tested. The test results show that the catalyst prepared at a feeding ratio of 1∶1 and a calcination temperature of 550℃ exhibits a low overpotential (346 mV at current density of 10 mA·cm−2), a low Tafel slope (65 mV·dec−1) and a high conductivity. The stability of the catalyst under alkaline conditions was tested by the timing potential method. The performance does not degrade significantly within 22 h. This work provides a new idea for the research of transition metal-based catalyst and has certain guiding significance for the design of catalyst.

     

  • loading
  • [1]
    TURNER J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974.
    [2]
    CHEN X B, SHEN S H, GUO L J, et al. Semiconductor-based photocatalytic hydrogen generation[J]. Chemical Reviews,2010,110(11):6503-6570. doi: 10.1021/cr1001645
    [3]
    JIN H Y, GUO C X, LIU X, et al. Emerging two-dimensional nanomaterials for electrocatalysis[J]. Chemical Reviews,2018,118(13):6337-6408. doi: 10.1021/acs.chemrev.7b00689
    [4]
    姚素薇, 李贺, 张卫国, 等. AC/Ni-Co 复合电极材料的制备及其催化析氢性能[J]. 复合材料学报, 2006, 23(3):77-81. doi: 10.3321/j.issn:1000-3851.2006.03.015

    YAO Suwei, LI He, ZHANG Weiguo, et al. Preparation and property for hydrogen evolution of AC (activated char)/Ni-Co composite electrode materials[J]. Acta Materiae Compositae Sinica,2006,23(3):77-81(in Chinese). doi: 10.3321/j.issn:1000-3851.2006.03.015
    [5]
    ZHENG M Y, DU J, HOU B P, et al. Few-layered Mo(1-x)WxS2 hollow nanospheres on Ni3S2 nanorod heterostructure as robust electrocatalysts for overall water splitting[J]. ACS Applied Materials & Interfaces,2017,9(31):26066-26076. doi: 10.1021/acsami.7b07465
    [6]
    JIANG X L, JANG H, LIU S G, et al. The heterostructure of Ru2P/WO3/NPC synergistically promotes H2O dissociation for improved hydrogen evolution[J]. Angewandte Chemie International Edition,2021,60(8):4110-4116. doi: 10.1002/anie.202014411
    [7]
    SRIRAPU V K V P, KUMAR A, SRIVASTAVA P, et al. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts[J]. Electrochimica Acta,2016,209:75-84. doi: 10.1016/j.electacta.2016.05.042
    [8]
    ZHANG M C, FAN H Q, ZHAO N, et al. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density[J]. Chemical Engineering Journal,2018,347:291-300. doi: 10.1016/j.cej.2018.04.113
    [9]
    ALSHEHRI S M, AHMED J, AHAMAD T, et al. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR)[J]. RSC Advances,2017,7(72):45615-45623. doi: 10.1039/C7RA07256B
    [10]
    ZHANG B, ZHENG X L, VOZNYY O, et al. Homogeneously dispersed multimetal oxygen-evolving catalysts[J]. Science,2016,352(6283):333-337. doi: 10.1126/science.aaf1525
    [11]
    CHEN H Y, SONG L Z, OUYANG S X, et al. Co and Fe codoped WO2.72 as alkaline-solution-available oxygen evolution reaction catalyst to construct photovoltaic water splitting system with solar-to-hydrogen efficiency of 16.9%[J]. Advanced Science,2019,6(16):1900465. doi: 10.1002/advs.201900465
    [12]
    QIN Q, JANG H, LI P, et al. A tannic acid-derived N-, P-codoped carbon-supported iron-based nanocomposite as an advanced trifunctional electrocatalyst for the overall water splitting cells and zinc-air batteries[J]. Advanced Energy Materials,2019,9(5):1803312. doi: 10.1002/aenm.201803312
    [13]
    李创, 王宇, 张亚男, 等. 氮掺杂碳负载表面部分暴露的CoFe2O4用于高性能催化析氧反应[J]. 复合材料学报, 2023, 40(3):1552-1559.

    LI Chuang, WANG Yu, ZHANG Yanan, et al. Partially surface exposed CoFe2O4 anchored on N-doped carbon endows its high performance for oxygen evolution reaction[J]. Acta Materiae Compositae Sinica,2023,40(3):1552-1559(in Chinese).
    [14]
    SONG Q Q, LI J Q, WANG S L, et al. Enhanced electrocatalytic performance through body enrichment of Co-based bimetallic nanoparticles in situ embedded porous N-doped carbon spheres[J]. Small,2019,15(44):1903395. doi: 10.1002/smll.201903395
    [15]
    WU H Y, QIAN X K, ZHU H P, et al. Controlled synthesis of highly stable zeolitic imidazolate framework-67 dodecahedra and their use towards the templated formation of a hollow Co3O4 catalyst for CO oxidation[J]. RSC Advances,2016,6(9):6915-6920. doi: 10.1039/C5RA18557B
    [16]
    LAI L S, YEONG Y F, LAU K K, et al. CO2 and CH4 permeation through zeolitic imidazolate framework (ZIF)-8 membrane synthesized via in situ layer-by-layer growth: An experimental and modeling study[J]. RSC Advances,2015,5(96):79098-79106. doi: 10.1039/C5RA12813G
    [17]
    WU R B, WANG D P, RUI X H, et al. In-situ formation of hollow hybrids composed of cobalt sulfides embedded within porous carbon polyhedra/carbon nanotubes for high-performance lithium-ion batteries[J]. Advanced Materials,2015,27(19):3038-3044. doi: 10.1002/adma.201500783
    [18]
    WU R B, WANG D P, KUMAR V, et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J]. Chemical Communications,2015,51(15):3109-3112. doi: 10.1039/C4CC09065A
    [19]
    WU R B, WANG D P, HAN J Y, et al. A general approach towards multi-faceted hollow oxide composites using zeolitic imidazolate frameworks[J]. Nanoscale,2015,7(3):965-974. doi: 10.1039/C4NR05135A
    [20]
    WU R B, QIAN X K, YU F, et al. MOF-templated formation of porous CuO hollow octahedra for lithium-ion battery anode materials[J]. Journal of Materials Chemistry A,2013,1(37):11126-11129. doi: 10.1039/c3ta12621h
    [21]
    PAN Y C, LIU Y Y, ZENG G F, et al. Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system[J]. Chemical Communications,2011,47(7):2071-2073. doi: 10.1039/c0cc05002d
    [22]
    FURUKAWA H, KO N, GO Y B, et al. Ultrahigh porosity in metal-organic frameworks[J]. Science,2010,329(5990):424-428. doi: 10.1126/science.1192160
    [23]
    ZHAO T, GAO J K, WU J, et al. Highly active cobalt/tungsten carbide@N-doped porous carbon nanomaterials derived from metal-organic frameworks as bifunctional catalysts for overall water splitting[J]. Energy Technology,2019,7(4):1800969. doi: 10.1002/ente.201800969
    [24]
    WANG T S, LIU X B, ZHAO X D, et al. Regulating uniform Li plating/stripping via dual-conductive metal-organic frameworks for high-rate lithium metal batteries[J]. Advanced Functional Materials,2020,30(16):2000786. doi: 10.1002/adfm.202000786
    [25]
    GONG H M, WANG G R, LI H Y, et al. Mn0.2Cd0.8S nanorods assembled with 0D CoWO4 nanoparticles formed p-n heterojunction for efficient photocatalytic hydrogen evolution[J]. International Journal of Hydrogen Energy,2020,45(51):26733-26745. doi: 10.1016/j.ijhydene.2020.07.059
    [26]
    CUI H J, LI B B, ZHANG Y Z, et al. Constructing Z-scheme based CoWO4/CdS photocatalysts with enhanced dye degradation and H2 generation performance[J]. International Journal of Hydrogen Energy,2018,43(39):18242-18252. doi: 10.1016/j.ijhydene.2018.08.050
    [27]
    ZHOU C, ZHANG Y W, LI Y Y, et al. Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor[J]. Nano Letters,2013,13(5):2078-2085. doi: 10.1021/nl400378j
    [28]
    NIE N, ZHANG L Y, FU J W, et al. Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance[J]. Applied Surface Science,2018,441:12-22. doi: 10.1016/j.apsusc.2018.01.193
    [29]
    ZHU B C, XIA P F, LI Y, et al. Fabrication and photocatalytic activity enhanced mechanism of direct Z-scheme g-C3N4/Ag2WO4 photocatalyst[J]. Applied Surface Science,2017,391:175-183. doi: 10.1016/j.apsusc.2016.07.104
    [30]
    XU G, XU G C, BAN J J, et al. Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions[J]. Journal of Colloid and Interface Science,2018,521:141-149. doi: 10.1016/j.jcis.2018.03.036
    [31]
    QIN Q, JANG H, CHEN L L, et al. Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions[J]. Advanced Energy Materials,2018,8(29):1801478. doi: 10.1002/aenm.201801478
    [32]
    AMIINU I S, PU Z H, LIU X B, et al. Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-Air batteries[J]. Advanced Functional Materials,2017,27(44):1702300. doi: 10.1002/adfm.201702300
    [33]
    GU T T, SA R J, ZHANG L J, et al. Engineering interfacial coupling between Mo2C nanosheets and Co@NC polyhedron for boosting electrocatalytic water splitting and zinc-air batteries[J]. Applied Catalysis B: Environmental,2021,296:120360. doi: 10.1016/j.apcatb.2021.120360
    [34]
    MCCRORY C C L, JUNG S, FERRER I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society,2015,137(13):4347-4357. doi: 10.1021/ja510442p
    [35]
    JIN Y S, WANG H T, LI J J, et al. Porous MoO2 nanosheets as non-noble bifunctional electrocatalysts for overall water splitting[J]. Advanced Materials,2016,28(19):3785-3790. doi: 10.1002/adma.201506314
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (578) PDF downloads(24) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return