Citation: | LUAN Jingmin, SONG Tingting, SUN Haifeng, et al. Preparation and photocatalytic performance of polyvinyl alcohol /oxygen-doped carbon nitride composite nanofiber films[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 1945-1957. DOI: 10.13801/j.cnki.fhclxb.20240718.001 |
A large number of organic pollutants caused serious pollution to the water cycle, and drug-resistant bacteria posed a serious threat to human health. Photocatalytic nanomaterials have become a research hotspot in the field of antibacteria. In this paper, oxygen-doped carbon nitride (O-CN) was prepared by hot polymerization with urea and formic acid. The optimal proportion of O-CN was mixed with polyvinyl alcohol (PVA) solution, and the PVA/O-CN composite nanofiber film was successfully prepared by electrospinning technology. The micro-morphology, structure, photocatalytic bacteriostatic properties and organic pollutant removal properties of O-CN and PVA/O-CN composite films were studied. The results show that O atom can replace the N position in the triazine ring structure of CN, and the light absorption capacity and the separation rate of electron-hole improve compared with that of CN. PVA/O-CN-0.6 composite nanofiber membrane has the best inhibition effect on E. coli and S. aureus, and the inhibition rates are 96% and 93.7%, respectively. In addition, PVA/O-CN-0.6 composite nanofiber membrane has a good performance in dye removal, and the removal rate of methylene blue (MB) by PVA/O-CN-0.6 reaches 97.7% within 4 h. Moreover, the film with excellent mechanical properties, has great application potential in many fields.
A large number of organic pollutants caused serious pollution to the water cycle, and at the same time, drug-resistant bacterium produced by the overuse antibiotics posed a serious threat to human health. Photocatalytic nanomaterials have become a research hotspot in the field of antibacterial because of broad spectrum and low energy consumption. Here, graphite phase carbon nitride (CN) was selected as a photocatalytic material, the flexible nanofiber catalysts were prepared by oxygen doping and electrospinning. The applications of photocatalytic removal of organic pollutants and bacteriostatic properties were explored.
A series of Oxygen-doped carbon nitride (O-CN) were obtained by using formic acid and urea by heat polymerization, and then combined with polyvinyl alcohol (PVA) solution, polyvinyl alcohol/oxygen-doped carbon nitride (PVA/O-CN) composite nanofiber membranes were prepared by electrospinning method. The morphology characteristics of O-CN and PVA/O-CN were observed by SEM and TEM, the structural characteristics of O-CN were studied by XRD, FT-IR and XPS, the optical properties of O-CN were investigated by PL and UV-vis, and the mechanical properties of PVA/O-CN were investigated by stress-strain test. Taking MB as the model pollutant, the photocatalytic removal of organic pollutants and recycling performance were analyzed and discussed. and the bacteriostatic ability of O-CN and PVA/O-CN composite nanofiber membrane against and under visible light irradiation were studied. The species and relative intensity of ROS in O-CN and PVA/O-CN were studied by electron spin resonance free radical trapping method. The principle of photocatalytic performance of PVA/O-CN may be as follows: under visible light, O-CN surface absorbs light energy, excises electron transition, generates electron-hole pair and separates. Photogenerated carriers can redox with O and HO on the catalyst surface to produce ROS (、、), which act on MB molecules and bacteria through nanofiber.
Through the test results of the above methods and the data analysis, it was found that the porous structure and lamellar structure of O-CN were more than that of CN. By analyzing the structure characteristics of O-CN and CN, O element may replace the position of N in the triazine ring structure of CN, and the defects increased. The visible light absorption capacity and electron-hole separation rate of O-CN were improved comparing with that of CN. The diameter of PVA/O-CN nanofibers increased with the increase of oxygen content. The removal rate of MB from PVA/O-CN-0.6 composite nanofiber membrane was above 95%, and no significant deactivation was observed after 5 cycles. The inhibition rate of PVA/O-CN composite nanofiber membrane against and were 96%and 93.7%, respectively.Conclusions: The photocatalytic removal of methylene blue (MB) and the photocatalytic bacteriostatic ability of PVA/O-CN nanofiber membranes were significantly improved. In particular, the PVA/O-CN-0.6 composite membrane can remove 97.7% of MB under the action of adsorption and photocatalysis in the experimental range. PVA/O-CN-0.6 composite membrane had the best inhibition effect on and , with maximum inhibition diameters of 24.36±0.15 mm and 20.48±0.35 mm, respectively, and the inhibition rates for and reached 96% and 93.7%. It was confirmed by ESR test that ROS was produced under photoexcitation, and ROS was the key factor to improve the antibacterial performance and photocatalytic removal efficiency. It also provided a possible bacteriostatic mechanism. It can be predicted that PVA/O-CN nanofiber membranes can be used in a variety of fields including but not limited to healthcare, food packaging and handling, household goods, medical beauty and other fields.
[1] |
ZHANG J, WANG J, XU H H, et al. The effective photocatalysis and antibacterial properties of AgBr/AgVO3 composites under visible-light[J]. RSC Advances, 2019, 9(63): 37109-37118. DOI: 10.1039/C9RA06810D
|
[2] |
ZHAO H B, XING Z P, SU S, et al. Recent advances in metal organic frame photocatalysts for environment and energy applications[J]. Applied Materials Today, 2020, 21: 100821. DOI: 10.1016/j.apmt.2020.100821
|
[3] |
HASIJA V, RAIZADA P, SUDHAIK A, et al. Recent advances in noble metal free doped graphitic carbon nitride based nanohybrids for photocatalysis of organic contaminants in water: A review[J]. Applied Materials Today, 2019, 15: 494-524. DOI: 10.1016/j.apmt.2019.04.003
|
[4] |
AMELIA S R, ROHMATULLOH Y, LISTIANI P, et al. One pot synthesis and performance of N- and (Mg, B, N)-doped ZnO for photocatalytic and antibacterial applications: Experimental and theoretical investigations[J]. Ceramics International, 2024, 50(7): 11216-11235.
|
[5] |
REGMI A, BASNET Y, BHATTARAI S, et al. Cadmium sulfide nanoparticles: Synthesis, characterization, and antimicrobial study[J]. Journal of Nanomaterials, 2023, 2023: 8187000.
|
[6] |
REN F, LI Y, ZHANG M, et al. Photocatalytic inactivation mechanism of nano-BiPO4 against Vibrio parahaemolyticus and its application in abalone[J]. Food Research International, 2024, 177: 113806. DOI: 10.1016/j.foodres.2023.113806
|
[7] |
HUY B T, NHI P T, VY N T T, et al. Design of novel p-n heterojunction ZnBi2O4-ZnS photocatalysts with impressive photocatalytic and antibacterial activities under visible light[J]. Environmental Science and Pollution Research, 2022, 29(56): 84471-84486. DOI: 10.1007/s11356-022-21810-w
|
[8] |
DAS M, SETHY C, KUNDU C N, et al. Synergetic reinforcing effect of graphene oxide and nanosilver on carboxymethyl cellulose/sodium alginate nanocomposite films: Assessment of physicochemical and antibacterial properties[J]. International Journal of Biological Macromolecules, 2023, 239: 124185. DOI: 10.1016/j.ijbiomac.2023.124185
|
[9] |
INDUJA M, SIVAPRAKASH K, GOMATHI P P. et al. Facile green synthesis and antimicrobial performance of Cu2O nanospheres decorated g-C3N4 nanocomposite[J]. Materials Research Bulletin, 2019, 112: 331-335. DOI: 10.1016/j.materresbull.2018.12.030
|
[10] |
THURSTON J H, HUNTER N M, WAYMENT L J. et al. Urea-derived graphitic carbon nitride (u-g-C3N4) films with highly enhanced antimicrobial and sporicidal activity[J]. Journal of Colloid and Interface Science, 2017, 505: 910-918. DOI: 10.1016/j.jcis.2017.06.089
|
[11] |
ORCUTT E K, VARAPRAGASAM S J, PETERSON Z C, et al. Ultrafast charge injection in silver-modified graphitic carbon nitride[J]. ACS Applied Materials & Interfaces, 2023, 15(12): 15478-15485.
|
[12] |
LYU C Y, LI W, LIN Q W, et al. Efficient photocatalytic hydrogen evolution: A novel multi-modified carbon nitride based on physical adsorption[J]. Journal of Materials Chemistry A, 2023, 11(38): 20701-20711. DOI: 10.1039/D3TA04906J
|
[13] |
LI F, ZHANG D N, XIANG Q J. Nanosheet-assembled hierarchical flower-like g-C3N4 for enhanced photocatalytic CO2 reduction activity[J]. Chemical Communications, 2020, 56(16): 2443-2446. DOI: 10.1039/C9CC08793A
|
[14] |
ZHANG R Y, ZHANG A L, YANG Y, et al. Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel[J]. Journal of Hazardous Materials, 2020, 397: 122822. DOI: 10.1016/j.jhazmat.2020.122822
|
[15] |
LU L L, XU X X, AN K L, et al. Coordination polymer derived NiS@g-C3N4 composite photocatalyst for sulfur vacancy and photothermal effect synergistic enhanced H2 production[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(9): 11869-11876.
|
[16] |
WANG Y, WANG X C, ANTONIETTI M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry[J]. Angewandte Chemie International Edition, 2012, 51(1): 68-89. DOI: 10.1002/anie.201101182
|
[17] |
STOLBOV S, ZULUAGA S. Sulfur doping effects on the electronic and geometric structures of graphitic carbon nitride photocatalyst: Insights from first principles[J]. Journal of Physics: Condensed Matter, 2013, 25(8): 085507. DOI: 10.1088/0953-8984/25/8/085507
|
[18] |
ZHANG Z Z, SUN Q M, JI R, et al. Boosted photogenerated charge carrier separation by synergy of oxygen and phosphorus co-doping of graphitic carbon nitride for efficient 2-chlorophenol photocatalytic degradation[J]. Chemical Engineering Journal, 2023, 471: 144388. DOI: 10.1016/j.cej.2023.144388
|
[19] |
ZHAO H B, ZHANG Y. Sulfur-doped carbon nitride with carbon vacancies: Enhanced photocatalytic activity for degradation of tetracycline hydrochloride[J]. Diamond and Related Materials, 2023, 139: 110239. DOI: 10.1016/j.diamond.2023.110239
|
[20] |
CHEN L, NING S B, LIANG L, et al. Potassium doped and nitrogen defect modified graphitic carbon nitride for boosted photocatalytic hydrogen production[J]. International Journal of Hydrogen Energy, 2022, 47(30): 14044-14052. DOI: 10.1016/j.ijhydene.2022.02.147
|
[21] |
ZHAO D M, WANG Y Q, DONG C L, et al. Boron-doped nitrogen-deficient carbon nitride-based Z-scheme heterostructures for photocatalytic overall water splitting[J]. Nature Energy, 2021, 6(4): 388-397. DOI: 10.1038/s41560-021-00795-9
|
[22] |
LEI L, FAN H Q, JIA Y X, et al. Cyanuric acid-assisted synthesis of hierarchical amorphous carbon nitride assembled by ultrathin oxygen-doped nanosheets for excellent photocatalytic hydrogen generation[J]. ACS Applied Materials & Interfaces, 2024, 16(12): 14809-14821.
|
[23] |
HU S Z, WANG K Y, LI P, et al. The effect of hydroxyl group grafting on the photocatalytic phenolic compounds oxidation ability of g-C3N4 prepared by a novel H2O2-alkali hydrothermal method[J]. Applied Surface Science, 2020, 513: 145783. DOI: https://doi.org/10.1016/j.apsusc.2020.145783
|
[24] |
ZENG Y X, LIU X, LIU C B, et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity[J]. Applied Catalysis B: Environmental, 2018, 224: 1-9. DOI: 10.1016/j.apcatb.2017.10.042
|
[25] |
温家奇. 氧掺杂多孔氮化碳的制备及其光催化制氢性能研究[D]. 郑州: 郑州大学, 2022.
WEN Jiaqi. Preparation of oxygen-doped porous carbon nitride and its photocatalytic performance for hydrogen production[D]. Zhengzhou: Zhengzhou University, 2022(in Chinese).
|
[26] |
XU X Q, WANG S, HU T, et al. Fabrication of Mn/O co-doped g-C3N4: Excellent charge separation and transfer for enhancing photocatalytic activity under visible light irradiation[J]. Dyes and Pigments, 2020, 175: 108107. DOI: 10.1016/j.dyepig.2019.108107
|
[27] |
LI F, ZHU P, WANG S M, et al. One-pot construction of Cu and O co-doped porous g-C3N4 with enhanced photocatalytic performance towards the degradation of levofloxacin[J]. RSC Advances, 2019, 9(36): 20633-20642. DOI: 10.1039/C9RA02411E
|
[28] |
IQBAL S, BAHADUR A, ANWER S, et al. Designing novel morphologies of l-cysteine surface capped 2D covellite (CuS) nanoplates to study the effect of CuS morphologies on dye degradation rate under visible light[J]. CrystEngComm, 2020, 22(24): 4162-4173. DOI: 10.1039/D0CE00421A
|
[29] |
XING Q F, ZANG M, XU X Q, et al. Rapid photocatalytic inactivation of E. coli by polyethyleneimine grafted O-doped g-C3N4: Synergetic effects of the boosted reactive oxygen species production and adhesion performance[J]. Applied Surface Science, 2022, 573: 151496. DOI: 10.1016/j.apsusc.2021.151496
|
[30] |
YANG Y Y, GUO W T, ZHAI Y P, et al. Oxygen-doped and nitrogen vacancy co-modified carbon nitride for the efficient visible light photocatalytic hydrogen evolution[J]. New Journal of Chemistry, 2020, 44(38): 16320-16328. DOI: 10.1039/D0NJ03695A
|
[31] |
HU B, GUO F S, LI S R, et al. Facile fabrication of oxygen-doped carbon nitride with enhanced visible-light photocatalytic degradation of methyl mercaptan[J]. Research on Chemical Intermediates, 2022, 48(6): 2295-2311. DOI: 10.1007/s11164-022-04712-x
|
[32] |
JINGUJI K, WATANABE M, MORITA R, et al. Visible light driven hydrogen peroxide production by oxygen and phosphorus co-doped CoP-C3N4 photocatalyst[J]. Catalysis Today, 2024, 426: 114400. DOI: 10.1016/j.cattod.2023.114400
|
[33] |
SONG X H, ZHANG X Y, LI X, et al. Enhanced light utilization efficiency and fast charge transfer for excellent CO2 photoreduction activity by constructing defect structures in carbon nitride[J]. Journal of Colloid and Interface Science, 2020, 578: 574-583. DOI: 10.1016/j.jcis.2020.06.035
|
[34] |
WANG L Q, LI R Y, ZHANG Y M, et al. Tetracycline degradation mechanism of peroxymonosulfate activated by oxygen-doped carbon nitride[J]. RSC Advances, 2023, 13(10): 6368-6377. DOI: 10.1039/D3RA00345K
|
[35] |
MAJIDI M, GIVIANRAD M H, SABER-TEHRANI M. et al. A novel method to synthesis of oxygen doped graphitic carbon nitride with outstanding photocatalytic efficiency for the degradation organic pollutants[J]. Diamond and Related Materials, 2023, 139: 110431. DOI: 10.1016/j.diamond.2023.110431
|
[36] |
FENG T, ZHANG J, YU F H, et al. Broad-bandgap porous graphitic carbon nitride with nitrogen vacancies and oxygen doping for efficient visible-light photocatalytic degradation of antibiotics[J]. Environmental Pollution, 2023, 335: 122268. DOI: 10.1016/j.envpol.2023.122268
|
[37] |
WEN D, SU Y R, FANG J Y, et al. Synergistically boosted photocatalytic production of hydrogen peroxide via protonation and oxygen doping on graphitic carbon nitride[J]. Nano Energy, 2023, 117: 108917. DOI: 10.1016/j.nanoen.2023.108917
|
[38] |
FENG C Y, TANG L, DENG Y C, et al. Synthesis of leaf-vein-like g-C3N4 with tunable band structures and charge transfer properties for selective photocatalytic H2O2 evolution[J]. Advanced Functional Materials, 2020, 30(39): 2001922. DOI: 10.1002/adfm.202001922
|
[39] |
YU P, ZHOU X Q, YAN Y C, et al. Enhanced visible-light-driven photocatalytic disinfection using AgBr-modified g-C3N4 composite and its mechanism[J]. Colloids and Surfaces B: Biointerfaces, 2019, 179: 170-179. DOI: 10.1016/j.colsurfb.2019.03.074
|
[40] |
ZHANG H H, HAN X X, YU H J, et al. Enhanced photocatalytic performance of boron and phosphorous co-doped graphitic carbon nitride nanosheets for removal of organic pollutants[J]. Separation and Purification Technology, 2019, 226: 128-137. DOI: 10.1016/j.seppur.2019.05.066
|
[41] |
ABD EL-AZIZ A M, EL-MAGHRABY A, TAHA N A. Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater[J]. Arabian Journal of Chemistry, 2017, 10(8): 1052-1060. DOI: 10.1016/j.arabjc.2016.09.025
|
[42] |
TARI E, UGRASKAN V, YAZICI O. Enhanced mechanical, thermal and optical properties of poly (vinyl alcohol)/functionalized-graphitic carbon nitride composites[J]. Fullerenes, Nanotubes and Carbon Nanostructures, 2023, 32(5): 464-470.
|
[43] |
WANG Y M, CAI H Y, QIAN F F, et al. Facile one-step synthesis of onion-like carbon modified ultrathin g-C3N4 2D nanosheets with enhanced visible-light photocatalytic performance[J]. Journal of Colloid and Interface Science, 2019, 533: 47-58. DOI: 10.1016/j.jcis.2018.08.039
|
[44] |
LIU D, TIAN R, WANG J, et al. Photoelectrocatalytic degradation of methylene blue using F doped TiO2 photoelectrode under visible light irradiation[J]. Chemosphere, 2017, 185: 574-581.
|
[45] |
NAMBIAR A P, PILLAI R, VADIKKEETTIL Y, et al. Glutaraldehyde-crosslinked poly(vinyl alcohol)/halloysite composite films as adsorbent for methylene blue in water[J]. Materials Chemistry and Physics, 2022, 291: 126752. DOI: 10.1016/j.matchemphys.2022.126752
|
[46] |
ZIDAN H M, EL-GHAMAZ N A, ABDELGHANY A M. et al. Photodegradation of methylene blue with PVA/PVP blend under UV light irradiation[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018, 199: 220-227. DOI: 10.1016/j.saa.2018.03.057
|
[47] |
JASEELA P K, GARVASIS J, JOSEPH A. Selective adsorption of methylene blue (MB) dye from aqueous mixture of MB and methyl orange (MO) using mesoporous titania (TiO2)-poly vinyl alcohol (PVA) nanocomposite[J]. Journal of Molecular Liquids, 2019, 286: 110908. DOI: 10.1016/j.molliq.2019.110908
|
[48] |
ALGHASHAM H A. Development of wound healing scaffolds based on polymeric blends of polyvinyl alcohol and hyaluronic acid doped with super antibacterials of silver phosphate with magnesium vanadate[J]. New Journal of Chemistry, 2024, 48: 4529-4538. DOI: 10.1039/D3NJ03842D
|
[49] |
KONG X Y, LIU X M, ZHENG Y F, et al. Graphitic carbon nitride-based materials for photocatalytic antibacterial application[J]. Materials Science and Engineering: R: Reports, 2021, 145: 100610. DOI: 10.1016/j.mser.2021.100610
|
[50] |
ALGHASHAM H A. Development of wound healing scaffolds based on polymeric blends of polyvinyl alcohol and hyaluronic acid doped with super antibacterials of silver phosphate with magnesium vanadate[J]. New Journal of Chemistry, 2024, 48(10): 4529-4538. DOI: 10.1039/D3NJ03842D
|
[51] |
ZHANG L L, ZHANG L F, XU J G. Chemical composition, antibacterial activity and action mechanism of different extracts from hawthorn (Crataegus pinnatifida Bge. )[J]. Scientific Reports, 2020, 10(1): 8876. DOI: 10.1038/s41598-020-65802-7
|
[52] |
HAO W, WANG W, LIU C, et al. Synthesis of Ag@CeO2@Ti3C2 heterojunction and its photocatalytic bacteriostatic properties[J]. Materials Letters, 2022, 308: 131202. DOI: 10.1016/j.matlet.2021.131202
|
[53] |
NEMATI D, ASHJARI M, RASHEDI H, et al. PVA based nanofiber containing cellulose modified with graphitic carbon nitride/nettles/trachyspermum accelerates wound healing[J]. Biotechnology Progress, 2021, 37(6): e3200. DOI: 10.1002/btpr.3200
|
[54] |
SHE P, LI J, BAO H G, et al. Green synthesis of Ag nanoparticles decorated phosphorus doped g-C3N4 with enhanced visible-light-driven bactericidal activity[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2019, 384: 112028. DOI: 10.1016/j.jphotochem.2019.112028
|
[55] |
IQBAL S, BAHADUR A, ALI S, et al. Critical role of the heterojunction interface of silver decorated ZnO nanocomposite with sulfurized graphitic carbon nitride heterostructure materials for photocatalytic applications[J]. Journal of Alloys and Compounds, 2021, 858: 158338. DOI: 10.1016/j.jallcom.2020.158338
|
[56] |
ZHANG D, LIU Y, LIU Z G, et al. Advances in antibacterial functionalized coatings on Mg and its alloys for medical use—A review[J]. Coatings, 2020, 10(9): 828.
|
[57] |
LIU X, ZHAO Y X, YANG X F, et al. Porous Ni5P4 as a promising cocatalyst for boosting the photocatalytic hydrogen evolution reaction performance[J]. Applied Catalysis B: Environmental, 2020, 275: 119144. DOI: 10.1016/j.apcatb.2020.119144
|