Volume 40 Issue 11
Nov.  2023
Turn off MathJax
Article Contents
ZHAO Xiaofeng, CUI Hongzhi, JIANG Di, et al. Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6311-6323. doi: 10.13801/j.cnki.fhclxb.20230222.008
Citation: ZHAO Xiaofeng, CUI Hongzhi, JIANG Di, et al. Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding[J]. Acta Materiae Compositae Sinica, 2023, 40(11): 6311-6323. doi: 10.13801/j.cnki.fhclxb.20230222.008

Microstructure, wear and corrosion resistance of (CrFeNiAl)100–xMox high-entropy alloy coatings by laser cladding

doi: 10.13801/j.cnki.fhclxb.20230222.008
Funds:  National Natural Science Foundation of China (51971121); Major-Special Science and Technology Projects in Shandong Province (2019JZZY010303; 2019JZZY010360)
  • Received Date: 2022-12-05
  • Accepted Date: 2023-02-08
  • Rev Recd Date: 2023-01-13
  • Available Online: 2023-02-23
  • Publish Date: 2023-11-01
  • For the corrosion and wear failure of materials used in the marine environment, the (CrFeNiAl)100–xMox high-entropy alloy coatings were prepared on 304 stainless steel (304 ss) by laser cladding. The phase composition, microstructure, hardness, wear resistance and corrosion resistance of the coatings were analyzed. The results show that the coatings are composed of body-centered cubic (BCC)+B2 phases. With the increase of Mo, the content of B2 phase gradually increases, and nano scale B2 phase precipitates in the dendrite. The hardness of the coating increases with the increase of Mo content, the highest hardness reaches HV0.2 636.6, and the wear resistance increases gradually. The corrosion current density firstly decreases and then increases with the increase of Mo, indicating that the corrosion resistance of the coating firstly increases and then decreases in 3.5wt%NaCl solution. The results of immersion corrosion show that the coatings are selectively dissolved in the interdendritic region. The corrosion current density and passivation current density of (CrFeNiAl)92Mo8 coating are lower than 304 ss, and the corrosion resistance is the best with good wear resistance. Adding appropriate Mo element can improve the wear resistance and corrosion resistance of (CrFeNiAl)100–xMox coatings.

     

  • loading
  • [1]
    FU Y, LI J, LUO H, et al. Recent advances on environmental corrosion behavior and mechanism of high-entropy alloys[J]. Journal of Materials Science & Technology,2021,80:217-233.
    [2]
    YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements novel alloy design[J]. Advanced Engineering Materials,2004,6(5):299-303. doi: 10.1002/adem.200300567
    [3]
    崔洪芝, 姜迪. 高熵合金涂层研究进展[J]. 金属学报, 2022, 58(3):17-27. doi: 10.11900/0412.1961.2021.00193

    CUI Hongzhi, JIAND Di. Research progress of high-entropy alloy coatings[J]. Acta Metallurgica Sinica,2022,58(3):17-27(in Chinese). doi: 10.11900/0412.1961.2021.00193
    [4]
    GU Z, PENF W, GUO W, et al. Design and characterization on microstructure evolution and properties of laser-cladding Ni1.5CrFeTi2B0.5Mox high-entropy alloy coatings[J]. Surface and Coatings Technology,2021,408:126793. doi: 10.1016/j.surfcoat.2020.126793
    [5]
    LI D, LI C, FENG T, et al. High-entropy Al0.3CoCrFeNi alloy fibers with high tensile strength and ductility at ambient and cryogenic temperatures[J]. Acta Materialia,2017,123:285-294. doi: 10.1016/j.actamat.2016.10.038
    [6]
    LUO J, SUN W, DUAN R, et al. Laser surface treatment-introduced gradient nanostructured TiZrHfTaNb refractory high-entropy alloy with significantly enhanced wear resistance[J]. Journal of Materials Science & Technology,2022,110:43-56.
    [7]
    FENG X, WANG H, LIU X, et al. Effect of Al content on wear and corrosion resistance of Ni-based alloy coatings by laser cladding[J]. Surface and Coatings Technology,2021,412:126976. doi: 10.1016/j.surfcoat.2021.126976
    [8]
    周子钧, 姜芙林, 宋鹏芳, 等. 激光熔覆高熵合金涂层的耐腐蚀性能研究进展[J]. 表面技术, 2021, 50(12):257-270.

    ZHOU Zijun, JIANG Fulin, SONG Pengfang, et al. Advances in corrosion resistance of high-entropy alloy coatings prepared by laser cladding[J]. Surface Technology,2021,50(12):257-270(in Chinese).
    [9]
    JIANG Y Q, LI J, JUAN Y F, et al. Evolution in microstructure and corrosion behavior of AlCoCrxFeNi high-entropy alloy coatings fabricated by laser cladding[J]. Journal of Alloys and Compounds,2019,775:1-14. doi: 10.1016/j.jallcom.2018.10.091
    [10]
    MA G, ZHAO Y, CUI H, et al. Addition Al and/or Ti induced modifications of microstructures, mechanical properties, and corrosion properties in CoCrFeNi high-entropy alloy coatings[J]. Acta Metallurgica Sinica (English Letters),2021,34(8):1087-1102. doi: 10.1007/s40195-021-01219-z
    [11]
    郝文俊, 孙荣禄, 牛伟, 等. 激光熔覆CoCrFeNiSix合金涂层组织及耐蚀性能研究[J]. 表面技术, 2021, 50(8):343-381.

    HAO Wenjun, SUN Ronglu, NIU Wei, et al. Study on microstructure and corrosion resistance of CoCrFeNiSix alloy coating by laser cladding[J]. Surface Technology,2021,50(8):343-381(in Chinese).
    [12]
    DAI C, ZHAO T, DU C, et al. Effect of molybdenum content on the microstructure and corrosion behavior of FeCoCrNiMox high-entropy alloys[J]. Journal of Materials Science & Technology,2020,46:64-73.
    [13]
    FU Y, HUANG C, DU C, et al. Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding[J]. Corrosion Science,2021,191:129727.
    [14]
    魏琳, 王志军, 吴庆峰, 等. Mo元素及热处理对Ni2CrFeMox高熵合金在NaCl溶液中耐蚀性能的影响[J]. 金属学报, 2019, 55(7):840-848. doi: 10.11900/0412.1961.2018.00558

    WEI Lin, WANG Zhijun, WU Qingfeng, et al. Effect of Mo element and heat treatment on corrosion resistance of Ni2CrFeMox high-entropy alloy in NaCl solution[J]. Acta Metallurgica Sinica,2019,55(7):840-848(in Chinese). doi: 10.11900/0412.1961.2018.00558
    [15]
    TOMIO A, SAGARA M, DOI T, et al. Role of alloyed molybdenum on corrosion resistance of austenitic Ni-Cr-Mo-Fe alloys in H2S-Cl environments[J]. Corrosion Science,2015,98:391-398. doi: 10.1016/j.corsci.2015.05.053
    [16]
    CHOU Y L, YEH J W, SHIH H C. The effect of molybdenum on the corrosion behaviour of the high-entropy alloys Co1.5CrFeNi1.5Ti0.5Mox in aqueous environments[J]. Corrosion Science,2010,52(8):2571-2581. doi: 10.1016/j.corsci.2010.04.004
    [17]
    PANG S, ZHANG T, ASAMI K, et al. Formation of bulk glassy Fe75–xyCrxMoyC15B10 alloys and their corrosion behavior[J]. Journal of Materials Research,2011,17(3):701-704.
    [18]
    JAKUPI P, WANG F, NOËL J J, et al. Corrosion product analysis on crevice corroded alloy-22 specimens[J]. Corrosion Science,2011,53(5):1670-1679. doi: 10.1016/j.corsci.2011.01.028
    [19]
    MI B, WANG H, WANG Q, et al. Corrosion resistance and contact resistance properties of Cr-doped amorphous carbon films deposited under different carbon target current on the 316 L stainless steel bipolar plate for PEMFC[J]. Vacuum,2022,203:111263. doi: 10.1016/j.vacuum.2022.111263
    [20]
    CARMINATI P, BUFFETEAU T, DAUGEY N, et al. Low pressure chemical vapour deposition of BN: Relationship between gas phase chemistry and coating microstructure[J]. Thin Solid Films,2018,664:106-114. doi: 10.1016/j.tsf.2018.08.020
    [21]
    ALLIMANALAN A, BABU S P K, MUTHUKUMARAN S, et al. Corrosion behaviour of thermally sprayed Mo added AlCoCrNi high entropy alloy coating[J]. Materials Today: Proceedings,2020,27:2398-2400. doi: 10.1016/j.matpr.2019.09.149
    [22]
    宋鹏芳, 姜芙林, 王玉玲, 等. 激光熔覆制备高熵合金涂层研究进展[J]. 表面技术, 2021, 50(1):242-252.

    SONG Pengfang, JIANG Fulin, WANG Yuling, et al. Advances in the preparation of high entropy alloy coatings by laser cladding[J]. Surface Technology,2021,50(1):242-252(in Chinese).
    [23]
    MA G, CUI H, JIANG D, et al. The evolution of multi and hierarchical carbides and their collaborative wear-resisting effects in CoCrNi/WC composite coatings via laser cladding[J]. Materials Today Communications,2022,30:103223. doi: 10.1016/j.mtcomm.2022.103223
    [24]
    刘奋军, 宁祥, 白艳霞, 等. AZ31镁合金表面激光熔覆Al-TiC复合涂层微观组织与腐蚀性能[J]. 复合材料学报, 2023, 40(2):963-973. doi: 10.13801/j.cnki.fhclxb.20220410.002

    LIU Fenjun, NING Xiang, BAI Yanxia, et al. Microstructure and corrosion properties of laser cladding Al-TiC compo-site coating on AZ31 magnesium alloy[J]. Acta Materiae Compositae Sinica,2023,40(2):963-973(in Chinese). doi: 10.13801/j.cnki.fhclxb.20220410.002
    [25]
    JOSEPH J, STANFORD N, HODGSON P, et al. Understanding the mechanical behaviour and the large strength/ductility differences between FCC and BCC AlxCoCrFeNi high entropy alloys[J]. Journal of Alloys and Compounds,2017,726:885-895. doi: 10.1016/j.jallcom.2017.08.067
    [26]
    NIU Z, WANG Y, GENG C, et al. Microstructural evolution, mechanical and corrosion behaviors of as-annealed CoCrFeNiMox (x = 0, 0.2, 0.5, 0.8, 1) high entropy alloys[J]. Journal of Alloys and Compounds,2020,820:153273. doi: 10.1016/j.jallcom.2019.153273
    [27]
    DONG Y, LU Y, KONG J, et al. Microstructure and mechanical properties of multi-component AlCrFeNiMox high-entropy alloys[J]. Journal of Alloys and Compounds,2013,573:96-101. doi: 10.1016/j.jallcom.2013.03.253
    [28]
    SHI X, WANG C, HUANG M, et al. Microstructure and wear resistance property of AlFeCrNiMox coatings by plasma cladding[J]. Materials Research Express,2019,6(10):106537. doi: 10.1088/2053-1591/ab3753
    [29]
    LI Y, LIAW P K, ZHANG Y. Microstructures and properties of the low-density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 high-entropy alloys[J]. Metals,2022,12(3):496. doi: 10.3390/met12030469
    [30]
    TAKEUCHI A, INOUE A. Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element[J]. Materials Transactions,2005,46(12):2817-2829. doi: 10.2320/matertrans.46.2817
    [31]
    刘昊, 高强, 郝敬宾, 等. 激光熔覆 AlCoCrFeNiSix 高熵合金涂层的微观组织及耐蚀性能[J]. 稀有金属材料与工程, 2022, 51(6):2199-2208.

    LIU Hao, GAO Qiang, HAO Jingbin, et al. Microstructure and corrosion resistance of AlCoCrFeNiSix high-entropy alloy coating by laser cladding[J]. Rare Metal Materials and Engineering,2022,51(6):2199-2208(in Chinese).
    [32]
    LIANG H, MIAO J, GAO B, et al. Microstructure and tribological properties of AlCrFe2Ni2W0.2Mo0.75 high-entropy alloy coating prepared by laser cladding in seawater, NaCl solution and deionized water[J]. Surface and Coatings Technology,2020,400:126214. doi: 10.1016/j.surfcoat.2020.126214
    [33]
    NAIR R B, ARORA H S, BOYANA A V, et al. Tribological behavior of microwave synthesized high entropy alloy claddings[J]. Wear,2019,436:203028.
    [34]
    HAO D, ZHANG N, ZHANG Y, et al. Effect of vanadium addition on microstructure and properties of Al0.5Cr0.9FeNi2.5 multi-principal alloys[J]. Journal of Iron and Steel Research International,2020,28(5):586-596.
    [35]
    GOU S, LI S, HU H, et al. Surface hardening of CrCoFeNi high-entropy alloys via Al laser alloying[J]. Materials Research Letters,2021,9(10):437-444. doi: 10.1080/21663831.2021.1968524
    [36]
    TANG Z, HUANG L, HE W, et al. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys[J]. Entropy,2014,16(2):895-911. doi: 10.3390/e16020895
    [37]
    高玉龙, 马国梁, 高晓华, 等. 激光熔覆CoCrNiMnTix高熵合金涂层组织及耐磨性能研究[J]. 表面技术, 2022, 51(9):351-370.

    GAO Yulong, MA Guoliang, GAO Xiaohua, et al. Microstructure and wear resistance of CoCrNiMnTix high-entropy alloy coating by laser cladding[J]. Surface Technology,2022,51(9):351-370(in Chinese).
    [38]
    方艳, 贾晓慧, 雷剑波, 等. 激光熔化沉积60wt%不同粒径WC复合NiCu合金耐磨性及电化学腐蚀性能[J]. 复合材料学报, 2022, 39(7):3498-3509.

    FANG Yan, JIA Xiaohui, LEI Jianbo, et al. Wear resistance and electrochemical corrosion properties of 60wt% coarse and fine WC composite NiCu alloy by laser melting deposition[J]. Acta Materiae Compositae Sinica,2022,39(7):3498-3509(in Chinese).
    [39]
    HAN Z, REN W, YANG J, et al. The corrosion behavior of ultra-fine grained CoNiFeCrMn high-entropy alloys[J]. Journal of Alloys and Compounds,2020,816:152583. doi: 10.1016/j.jallcom.2019.152583
    [40]
    FATTAH-ALHOSSEINI A, SOLTANI F, SHIRSALIMI F, et al. The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM)[J]. Corrosion Science,2011,53(10):3186-3192. doi: 10.1016/j.corsci.2011.05.063
    [41]
    HOSSEINI M, FOTOUHI L, EHSANI A, et al. Enhancement of corrosion resistance of polypyrrole using metal oxide nanoparticles: Potentiodynamic and electrochemical impedance spectroscopy study[J]. Journal of Colloid and Interface Science,2017,505:213-219. doi: 10.1016/j.jcis.2017.05.097
    [42]
    MAN C, DONG C, LIU T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316 L SS in simulated body fluid[J]. Applied Surface Science,2019,467:193-205.
    [43]
    KAO Y F, LEE T D, CHEN S K, et al. Electro chemical passive properties of AlxCoCrFeNi (x=0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science,2010,52(3):1026-1034. doi: 10.1016/j.corsci.2009.11.028
    [44]
    HUANG G, QU L, LU Y, et al. Corrosion resistance improvement of 45 steel by Fe-based amorphous coating[J]. Vacuum,2018,153:39-42. doi: 10.1016/j.vacuum.2018.03.042
    [45]
    陶继闯, 卢一平. Mo 含量对 Al0.1CoCrCu0.5FeNiMox 高熵合金的组织结构、力学性能及耐蚀性能的影响[J]. 材料导报, 2020, 34(4):18096-18099.

    TAO Jichuang, LU Yiping. Effect of Mo content on microstructure, mechanical properties and corrosion resistance of Al0.1CoCrCu0.5FeNiMox high-entropy alloys[J]. Material Reports,2020,34(4):18096-18099(in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(4)

    Article Metrics

    Article views (562) PDF downloads(22) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return