Citation: | SHEN Chenjie, LI Xiaoqiang, WANG Qun, et al. Preparation and properties of bifunctional magnetic fluorescent core-shell nanoparticles[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2178-2190. DOI: 10.13801/j.cnki.fhclxb.20240701.001 |
Graphene coated ferronitride magnetic nanoparticles (G@FeN-MP) were modified by CO2 plasma surface modification technology to obtain graphene oxide coated ferronitride magnetic nanoparticles (GO@FeN-MP). Zinc sulfide modified graphene oxide coated ferronitride magnetic nanoparticles (ZnS-GO@FeN-MP) were prepared by solvothermal method, and the composites were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV), photoluminescence spectroscopy (PL) and Raman spectroscopy (Raman), and concurrent cytotoxicity assessment of A549 cells and the coupled application of ZnS-GO@FeN-MP secondary antibodies have unveiled their potential in experimental biological functions, with study results affirming the excellent biocompatibility of this nanocomposite material.
[1] |
REN Z Q, ZHU X Q, LYU H H, et al. A fluorescent method based on magnetic nanoparticles for detection of CGG trinucleotide repeat genes[J]. New Journal of Chemistry, 2019, 43: 1322-1327. DOI: 10.1039/C8NJ04686G
|
[2] |
AKSHAY P, VIJAY M, SOURAV T, et al. Nanotechnology derived nanotools in biomedical perspectives: An update[J]. Current Nanoscience, 2019, 15(2): 137-146. DOI: 10.2174/1573413714666180426112851
|
[3] |
JIANG L, LIU S, ZHANG D, et al. Catechol-formaldehyde resin microspheres@UiO-66-NH2@CdS core-shell nanohybrids as robust visible-light photocatalyst for multifunctional applications[J]. Materials Today Chemistry, 2024, 35: 101875. DOI: 10.1016/j.mtchem.2023.101875
|
[4] |
HOSSAIN M D, MAYANOVIC R A, SAKIDJA R, et al. Magnetic properties of core-shell nanoparticles possessing a novel Fe(II)-chromia phase: An experimental and theoretical approach[J]. Nanoscale, 2018, 10: 2138-2147. DOI: 10.1039/C7NR04770C
|
[5] |
CHEN F, LI Y, LIN X, et al. Polymeric systems containing supramolecular coordination complexes for drug delivery[J]. Polymers, 2021, 13(3): 370. DOI: 10.3390/polym13030370
|
[6] |
NONG J, GLASSMAN P M, MUZYKANTOV V R. Targeting vascular inflammation through emerging methods and drug carriers[J]. Advanced Drug Delivery Reviews, 2022, 184: 114180. DOI: 10.1016/j.addr.2022.114180
|
[7] |
BEKOVOC M, BAN I, DROFENIK M, et al. Magnetic nanoparticles as mediators for magnetic hyperthermia therapy applications: A status review[J]. Applied Sciences, 2023, 13(17): 9548. DOI: 10.3390/app13179548
|
[8] |
LIU X L, ZHENG J J, SUN W, et al. Ferrimagnetic vortex nanoring-mediated mild magnetic hyperthermia imparts potent immunological effect for treating cancer metastasis[J]. ACS Nano, 2019, 13(8): 8811-8825. DOI: 10.1021/acsnano.9b01979
|
[9] |
RAMACHANDRAN A, JANA M, KUMAR A, et al. Evaluation of infantile brachial plexopathy using 3T MRI and high-resolution ultrasound: Experience from a tertiary care centre[J]. Neurology India, 2024, 72(2): 326-333. DOI: 10.4103/ni.ni_818_21
|
[10] |
MUI T S M, SILVA L L G, PRYSIAZHNYI V, et al. Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties[J]. Surface and Coatings Technology, 2017, 312: 32-36. DOI: 10.1016/j.surfcoat.2016.08.024
|
[11] |
MOOSBURGER-WILL J, LACHNER E, LOEFFLER M, et al. Adhesion of carbon fibers to amine hardened epoxy resin: Influence of ammonia plasma functionalization of carbon fibers[J]. Applied Surface Science, 2018, 453: 141-152. DOI: 10.1016/j.apsusc.2018.05.057
|
[12] |
CROISSANT J G, FATIEIEV Y, ALMALIK A, et al. Mesoporous silica and organosilica nanoparticles: Physical chemistry, biosafety, delivery strategies, and biomedical applications[J]. Advanced Healthcare Materials, 2018, 7(4): 1700831. DOI: 10.1002/adhm.201700831
|
[13] |
SOBHANAN J, ANAS A, BIJU V. Nanomaterials for fluorescence and multimodal bioimaging[J]. Chemical Record, 2023, 23(3): 1527.
|
[14] |
MCHUGH K J, JING L, BEHRENS A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Advanced Materials, 2018, 30(18): 1706356. DOI: 10.1002/adma.201706356
|
[15] |
ZHANG J, WANG L, CHEN F, et al. Optical properties of multinary copper chalcogenide semiconductor nanocrystals and their applications in electroluminescent devices[J]. Chinese Science Bulletin, 2021, 66(17): 2162-2178. DOI: 10.1360/TB-2020-1633
|
[16] |
ORTAKAYA S, DUQUE C A. Infrared relative dielectric permittivity and refractive index on the spherical CdSe/ZnS heteronanocrystals with self-consistent field[J]. Physica Scripta, 2024, 99(4): 045968. DOI: 10.1088/1402-4896/ad328a
|
[17] |
FONTENOT R S, ALLISON S W, LYNCH K J, et al. Mechanical, spectral, and luminescence properties of ZnS:Mn doped PDMS[J]. Journal of Luminescence, 2016, 170: 194-199. DOI: 10.1016/j.jlumin.2015.10.047
|
[18] |
AKHGARI F, FATTAHI H, OSKOEI Y M, et al. Recent advances in nanomaterial-based sensors for detection of trace nitroaromatic explosives[J]. Sensors & Actuators B Chemical, 2015, 221: 867-878.
|
[19] |
DEVADOSS A, SUDHAGAR P, TERASHIMA C, et al. Photoelectrochemical biosensors: New insights into promising photoelectrodes and signal amplification strategies[J]. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015, 24: 43-63. DOI: 10.1016/j.jphotochemrev.2015.06.002
|
[20] |
LI X Q, WANG Q, YU Y F. Surface modification by CO2 plasma boosting core shells structural Fe/Fe3C/FeN@graphite carbon nanoparticles toward high performance microwave absorber[J]. Materials Today Nano, 2024, 25: 100465. DOI: 10.1016/j.mtnano.2024.100465
|
[21] |
FAN X L, ZHU Y J, LUO C, et al. In situ lithiated FeF3/C nanocomposite as high energy conversion-reaction cathode for lithium-ion batteries[J]. Journal of Power Sources, 2016, 307: 435-442. DOI: 10.1016/j.jpowsour.2016.01.004
|
[22] |
MAO C M, XU X X, WANG S W, et al. Mass production of porous Fe3O4 nanoparticle networks wrapped with ultrathin nitrogen-doped carbon for superior lithium ion batteries[J]. Applied Surface Science, 2020, 505: 144525. DOI: 10.1016/j.apsusc.2019.144525
|
[23] |
REN M M, YANG M Z, LIU W L, et al. Ultra-small Fe3O4 nanocrystals decorated on 2D graphene nanosheets with excellent cycling stability as anode materials for lithium ion batteries[J]. Electrochimica Acta, 2016, 194: 219-227. DOI: 10.1016/j.electacta.2016.02.091
|
[24] |
SHAO M W, WANG D B, YU G H, et al. The synthesis of carbon nanotubes at low temperature via carbon suboxide disproportionation[J]. Carbon, 2004, 42(1): 183-185. DOI: 10.1016/j.carbon.2003.10.010
|
[25] |
PENG C C, YANG C, CHEN P, et al. Mesoporous carbons and Fe collectively boost the capacity increases upon long-term cycling of Ni/Fe/NiFe2O4@C anode for lithium-ion batteries[J]. Applied Surface Science, 2023, 623: 156994. DOI: 10.1016/j.apsusc.2023.156994
|
[26] |
YUAN K F, NI Y H, ZHANG L. Facile hydrothermal synthesis of polyhedral Fe3O4 nanocrystals, influencing factors and application in the electrochemical detection of H2O2[J]. Journal of Alloys and Compounds, 2012, 532: 10-15.
|
[27] |
RAO T P, KUMAR M C S, ANGAYARKANNI S A, et al. Effect of stress on optical band gap of ZnO thin films with substrate temperature by spray pyrolysis[J]. Journal of Alloys and Compounds, 2009, 485(1-2): 413-417. DOI: 10.1016/j.jallcom.2009.05.116
|
[28] |
HUANG N B, DONG W J, FENG Y, et al. Using dopamine interlayers to construct Fe/Fe3C@FeNC microspheres of high N-content for bifunctional oxygen electrocatalysts of Zn-air batteries[J]. Dalton Transactions, 2023, 52(8): 2373-2383. DOI: 10.1039/D2DT03522G
|
[29] |
WANG H, FENG X Y, LIU N, et al. Engineering Fe-Fe3C@Fe-N-C active sites and hybrid structures from dual metal-organic frameworks for oxygen reduction reaction in H2-O2 fuel cell and Li-O2 battery[J]. Advanced Functional Materials, 2019, 29(23): 1901531. DOI: 10.1002/adfm.201901531
|
[30] |
FELTEN A, BITTENCOURT C, PIREAUX J J, et al. Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments[J]. Journal of Applied Physics, 2005, 98(7): 074308. DOI: 10.1063/1.2071455
|
[31] |
WANG Y L, ZHENG J X, WANG J L, et al. Rapid microwave-assisted synthesis of highly luminescent nitrogen-doped carbon dots for white light-emitting diodes[J]. Optical Materials, 2017, 73: 319-329. DOI: 10.1016/j.optmat.2017.08.032
|
[32] |
LIU S, LIU L W, CHEN X W, et al. On an easy way to prepare Fe, S, N tri-doped mesoporous carbon materials as efficient electrocatalysts for oxygen reduction reaction[J]. Electrocatalysis, 2019, 10: 72-81. DOI: 10.1007/s12678-018-0496-9
|
[33] |
CAO Q C, DING X B, LI F, et al. Zinc, sulfur and nitrogen co-doped carbon from sodium chloride/zinc chloride-assisted pyrolysis of thiourea/sucrose for highly efficient oxygen reduction reaction in both acidic and alkaline media[J]. Journal of Colloid and Interface Science, 2020, 576: 139-146. DOI: 10.1016/j.jcis.2020.05.020
|
[34] |
LI Y F, LIU Y Z, SHEN W Z, et al. Graphene-ZnS quantum dot nanocomposites produced by solvothermal route[J]. Materials Letters, 2011, 65(15): 2518-2521.
|
[35] |
ZHAO L P, GAO L. Coating multi-walled carbon nanotubes with zinc sulfide[J]. Journal of Materials Chemistry, 2004, 14(6): 1001-1004. DOI: 10.1039/b315450e
|
[36] |
LI Y F, LIU Y Z, SHEN W Z, et al. Graphene-ZnS quantum dot nanocomposites produced by solvothermal route[J]. Materials Letters, 2011, 65(15): 2518-2521.
|
[1] | WANG Hongxing, LI Huijie, LI Chunfeng, LIU Mingli. From Traditional to Intelligent: Advances in Wood Color Treatment Technologies[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3010-3026. |
[2] | SU Jiayun, LUO Lijuan, SHEN Yangyu, YU Yan, YANG Rilong. Effect of nano-hydroxyapatite micromorphology on the properties and stability of superhydrophobic layers of wood[J]. Acta Materiae Compositae Sinica, 2025, 42(4): 2155-2166. DOI: 10.13801/j.cnki.fhclxb.20240722.001 |
[3] | ZHENG Shuqing, ZHANG Yi, MU Jiaxin, WANG Yongjuan, WANG Fengqiang, ZHANG Zhijun. Preparation of amidinourea phytate and its flame retardant effect on wood[J]. Acta Materiae Compositae Sinica, 2025, 42(1): 476-490. DOI: 10.13801/j.cnki.fhclxb.20240430.002 |
[4] | JIANG Jun, DU Jingjing, XU Xinwu, MEI Changtong. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. DOI: 10.13801/j.cnki.fhclxb.20231019.004 |
[5] | ZHOU Jing, WANG Luzhen, XU Zhaoyang, LI Dagang, CHEN Chuchu. Research progress on preparation and functional application of densified wood films[J]. Acta Materiae Compositae Sinica, 2023, 40(12): 6488-6499. DOI: 10.13801/j.cnki.fhclxb.20230530.002 |
[6] | LIU Shengwei, LEI Yunxiao, ZHANG Jiawei, BAI Chengyu, HU Qinyong. Effects of preexisting surface damage on bonding performance at CFRP-wood interfaces[J]. Acta Materiae Compositae Sinica, 2023, 40(8): 4720-4732. DOI: 10.13801/j.cnki.fhclxb.20221014.003 |
[7] | Performance of wood-ceramic composites impregnated with methyl triethoxy silane modified sol[J]. Acta Materiae Compositae Sinica, 2009, 26(3): 122-126. |
[8] | Effects of carbonization conditions on properties of carbon fiber prepared from liquefied wood in phenol[J]. Acta Materiae Compositae Sinica, 2008, 25(5): 74-78. |
[9] | FU Yun-lin, ZHAO Guang-jie, CHUN Sukyoung. Microstructure and physical properties of silicon dioxide/ wood composite[J]. Acta Materiae Compositae Sinica, 2006, 23(4): 52-59. |
[10] | CHEN Zhilin, WANG Qun, ZUO Tieyong, FU Feng, WANG Jinlin, YE Kelin. TECHNIQUES AND PROPERTIES OF THE WOOD-INORGANIC COMPOSITE[J]. Acta Materiae Compositae Sinica, 2003, 20(4): 128-132. |