Volume 41 Issue 4
Apr.  2024
Turn off MathJax
Article Contents
JIANG Jun, DU Jingjing, XU Xinwu, et al. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004
Citation: JIANG Jun, DU Jingjing, XU Xinwu, et al. Research progress on performance improvement and process optimization of thermally treated wood[J]. Acta Materiae Compositae Sinica, 2024, 41(4): 1712-1725. doi: 10.13801/j.cnki.fhclxb.20231019.004

Research progress on performance improvement and process optimization of thermally treated wood

doi: 10.13801/j.cnki.fhclxb.20231019.004
Funds:  National Natural Science Foundation of China (31901248); China Postdoctoral Science Foundation (2018M642258)
  • Received Date: 2023-08-10
  • Accepted Date: 2023-10-07
  • Rev Recd Date: 2023-09-27
  • Available Online: 2023-10-20
  • Publish Date: 2024-04-15
  • Thermally treated wood is an eco-friendly and sustainable material. After thermal treatment, some mechanical properties and surface wettability of wood reduces, and light aging is more likely to occur. In addition, the high temperature environment is required for the traditional technology during the thermal treatment process, which produces a lot of energy consumption, resulting in high production costs. In view of the performance defects of thermally treated wood and the shortcomings of production process, the research progress on performance improvement of thermally treated wood is summarized from the following two aspects: Performance improvement and process optimization. The enhancements on mechanical property, surface wettability, anti-weathering of thermally treated wood, and thermal treatment process optimization are discussed. Also, the limitation of themethods for properties improvement of thermally treated wood is analyzed, and the solutions are proposed. After that, this work suggest that it is better to combine the mechanism and practical application of thermally treated wood to avoid performance degradation caused by heat treatment, and to show the advantage of overall performance of thermally treated wood, which could increase the value-added utilization and expand the scope of application.

     

  • loading
  • [1]
    RAUTKARI L, HILL C A, CURLING S, et al. What is the role of the accessibility of wood hydroxyl groups in controlling moisture content?[J]. Journal of Materials Science, 2013, 48(18): 6352-6356. doi: 10.1007/s10853-013-7434-2
    [2]
    WANG D, FU F, LIN L. Molecular-level characterization of changes in the mechanical properties of wood in response to thermal treatment[J]. Cellulose, 2022, 8: 1-12.
    [3]
    顾炼百, 丁涛, 江宁. 木材热处理研究及产业化进展[J]. 林业工程学报, 2019, 4(4): 1-11.

    GU Lianbai, DING Tao, JIANG Ning. Development of wood heat treatment research and industrialization[J]. Journal of Forestry Engineering, 2019, 4(4): 1-11(in Chinese).
    [4]
    JIANG J, LI H, PANG J, et al. Heat treatment induces chemical changes and silica sol penetration in wood for properties improvement: Hydrophobicity, thermal stability, and surface hardness[J]. Journal of Wood Chemistry and Technology, 2022, 42(2): 104-113. doi: 10.1080/02773813.2022.2036193
    [5]
    TJEERDSMA B, BOONSTRA M, PIZZI A, et al. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement[J]. Holzals Rohund Werkstoff, 1998, 56(3): 149-153. doi: 10.1007/s001070050287
    [6]
    BAYANI S, TAGHIYARI H R, PAPADOPOULOS A N. Physical and mechanical properties of thermally-modified beech wood impregnated with silver nano-suspension and their relationship with the crystallinity of cellulose[J]. Polymers, 2019, 11(10): 1538. doi: 10.3390/polym11101538
    [7]
    BORŮVKA V, ZEIDLER A, HOLEČEK T, et al. Elastic and strength properties of heat-treated beech and birch wood[J]. Forests, 2018, 9(4): 197. doi: 10.3390/f9040197
    [8]
    BEHR G, BOLLMUS S, GELLERICH A, et al. Improvement of mechanical properties of thermally modified hardwood through melamine treatment[J]. Wood Material Science & Engineering, 2018, 13(5): 262-270.
    [9]
    LI W, ZHANG Z, YANG K, et al. Understanding the effect of combined thermal treatment and phenol-formaldehyde resin impregnation on the compressive stress of wood[J]. Wood Science and Technology, 2022, 56(4): 1071-1086. doi: 10.1007/s00226-022-01400-2
    [10]
    BEKHTA P. Effect of heat treatment on some physical and mechanical properties of birch plywood[J]. European Journal of Wood and Wood Products, 2020, 78(4): 683-691. doi: 10.1007/s00107-020-01560-7
    [11]
    WANG X, CHEN X, XIE X, et al. Multi-scale evaluation of the effect of phenol formaldehyde resin impregnation on the dimensional stability and mechanical properties of Pinus massoniana lamb[J]. Forests, 2019, 10(8): 646. doi: 10.3390/f10080646
    [12]
    张银亮, 刘明利, 李春风. 硅溶胶/酚醛树脂浸渍与热处理改性杨木的力学性能[J]. 北华大学学报(自然科学版), 2021, 22(6): 815-819. doi: 10.11713/j.issn.1009-4822.2021.06.023

    ZHAGN Yinliang, LIU Mingli, LI Chunfeng. Mechanical properties of poplar wood modified by silica-sol/phenol-formaldehyde resin impregnation and heat treatment[J]. Journal of Beihua University (Natural Science), 2021, 22(6): 815-819(in Chinese). doi: 10.11713/j.issn.1009-4822.2021.06.023
    [13]
    罗名春, 刘付建, 赵斌. 浸渍高温热处理改性桉木力学性能分析[J]. 林产工业, 2019, 46(3): 45-49.

    LUO Mingchun, LIU Fujian, ZHAO Bin. Analysis of mechanical properties of eucalyptus woods immersed in high temperature treatment[J]. China Forest Products Industry, 2019, 46(3): 45-49(in Chinese).
    [14]
    XUE J, XU W, ZHOU J, et al. Effects of high-temperature heat treatment modification by impregnation on physical and mechanical properties of poplar[J]. Materials, 2022, 15(20): 7334. doi: 10.3390/ma15207334
    [15]
    JIANG J, WANG C, EBRAHIMI M, et al. Eco-friendly preparation of high-quality mineralized wood via thermal modification induced silica sol penetration[J]. Industrial Crops and Products, 2022, 183: 115003. doi: 10.1016/j.indcrop.2022.115003
    [16]
    LIU M L, LI C F, LIU Y L. Physical and mechanical properties of modified poplar wood by heat treatment and impregnation of sodium silicate solution[J]. Wood Research, 2019, 64(1): 145-153.
    [17]
    ZHANG N, XU M, CAI L. Improvement of mechanical, humidity resistance and thermal properties of heat-treated rubber wood by impregnation of SiO2 precursor[J]. Scientific Reports, 2019, 9: 982.
    [18]
    张南南. 二氧化硅改性热处理橡胶木性能研究[D]. 哈尔滨: 东北林业大学, 2019.

    ZHAGN Nannan. Study on the properties of heat-treated rubber wood modified by silica impregnation[D]. Harbin: Northeast Forestry University, 2019(in Chinese).
    [19]
    LEE S H, ASHAARI Z, LUM W C, et al. Thermal treatment of wood using vegetable oils: A review[J]. Construction and Building Materials, 2018, 181: 408-419. doi: 10.1016/j.conbuildmat.2018.06.058
    [20]
    SURI I F, PURUSATAMA B D, KIM J H, et al. Comparison of physical and mechanical properties of Paulownia tomentosa and Pinus koraiensis wood heat-treated in oil and air[J]. European Journal of Wood and Wood Products, 2022, 80(6): 1389-1399. doi: 10.1007/s00107-022-01840-4
    [21]
    BAAR J, BRABEC M, SLÁVIK R, et al. Effect of hemp oil impregnation and thermal modification on European beech wood properties[J]. European Journal of Wood and Wood Products, 2021, 79(1): 161-175. doi: 10.1007/s00107-020-01615-9
    [22]
    HE L, ZHANG T, ZHAO Y, et al. Effect of natural tung oil on wood shrinkage during the thermal modification process[J]. Journal of Cleaner Production, 2022, 379: 134450. doi: 10.1016/j.jclepro.2022.134450
    [23]
    HE L, ZHANG T, ZHAO X, et al. Synergistic effect of tung oil and heat treatment on surface characteristics and dimensional stability of wood[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 665: 131233. doi: 10.1016/j.colsurfa.2023.131233
    [24]
    HAN L, KUTNAR A, COUCEIRO J, et al. Creep properties of densified wood in bending[J]. Forests, 2022, 13(5): 757. doi: 10.3390/f13050757
    [25]
    李任. 预热条件对毛白杨层状压缩木材形成及其性能影响研究[D]. 北京: 北京林业大学, 2019.

    LI Ren. Effects of preheating conditions on the formation and properties of sandwish compressed wood of white poplar[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [26]
    TAKAMURA N. Studies on hot pressing and drying process in the production of fibre board. III softening of fiber components in hot pressing of fibre mat[J]. Wood Research Society, 1968, 14(2): 75.
    [27]
    张刚. 基于超疏水和热改性技术的杨木尺寸稳定化研究[D]. 泰安: 山东农业大学, 2018.

    ZHANG Gang. Study on dimensional stabilization of poplar wood based on superhydrophobic and thermal modification techniques[D]. Taian: Shandong Agricultural University, 2018(in Chinese).
    [28]
    GUO J, SONG K, SALMÉN L, et al. Changes of wood cell walls in response to hygro-mechanical steam treatment[J]. Carbohydrate Polymers, 2015, 115: 207-214. doi: 10.1016/j.carbpol.2014.08.040
    [29]
    YIN J, YUAN T, LU Y, et al. Effect of compression combined with steam treatment on the porosity, chemical compositon and cellulose crystalline structure of wood cell walls[J]. Carbohydrate Polymers, 2017, 155: 163-172. doi: 10.1016/j.carbpol.2016.08.013
    [30]
    XIANG E, LI J, HUANG R, et al. Effect of superheated steam pressure on the physical and mechanical properties of sandwich-densified wood[J]. Wood Science and Technology, 2022, 56(3): 899-919. doi: 10.1007/s00226-022-01383-0
    [31]
    王立朝. 表层压缩/热处理协效改性橡胶木的工艺与性能研究[D]. 哈尔滨: 东北林业大学, 2022.

    WANG Licao. Study on technology and properties of rubber wood modified by surface compression/heat treatment[D]. Harbin: Northeast Forestry University, 2022(in Chinese).
    [32]
    GAO Z, HUANG R, LU J, et al. Sandwich compression of wood: Control of creating density gradient on lumber thickness and properties of compressed wood[J]. Wood Science and Technology, 2016, 50(4): 833-844. doi: 10.1007/s00226-016-0824-2
    [33]
    TU Y, LIANG J, YU L, et al. Effects of plasma treatment on the surface characteristics and bonding performance of Pinus massoniana wood[J]. Forests, 2023, 14(7): 1346. doi: 10.3390/f14071346
    [34]
    郝丹. 热处理胶合木层间界面粘结性能研究[D]. 南京: 南京林业大学, 2021.

    HAO Dan. Study on interface layer bonding properties of heat-treated glulam[D]. Nanjing: Nanjing Forestry University, 2021(in Chinese).
    [35]
    孟素戎, 王慧珊, 王梦蕾, 等. 炭化处理对橄榄木渗透性、胶合及涂饰性能的影响[J]. 林业机械与木工设备, 2020, 48(3): 36-40.

    MENG Surong, WANG Huishan, WANG Menglei, et al. Effects of carbonization on permeability, gluing and finishing properties of olive wood[J]. Forestry Machinery & Woodworking Equipment, 2020, 48(3): 36-40(in Chinese).
    [36]
    LIU J, WANG C, YANG X, et al. Interlaminar shear properties of glulam made of heat-treated laminates[J]. European Journal of Wood and Wood Products, 2023, 81(4): 887-896.
    [37]
    储德淼. 基于阻燃/热处理联合改性杨木表面功能层构建与性能研究[D]. 北京: 北京林业大学, 2019.

    CHU Demiao. Manufacturing and characterizing of the surface functional layer on poplar using combined treatment of fire retardancy and thermal modification[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [38]
    林鑫. 聚乙二醇改性热处理橡胶木及性能研究[D]. 哈尔滨: 东北林业大学, 2021.

    LIN Xin. Properties study of heat-treated rubber wood modified by polyethylene glycol[D]. Harbin: Northeast Forestry University, 2021(in Chinese).
    [39]
    于家豪. 增强热处理木材漆膜附着性能的研究[D]. 北京: 中国林业科学研究院, 2016.

    YU Jiahao. Study on coating adhesion improvment of heat-treated wood[D]. Beijing: Chinese Academy of Forestry, 2016(in Chinese).
    [40]
    SAKATA I, MORITA M, TSURUTA N, et al. Activation of wood surface by corona treatment to improve adhesive bonding[J]. Journal of Applied Polymer Science, 1993, 49(7): 1251-1258. doi: 10.1002/app.1993.070490714
    [41]
    HUBER H, HAAS R, PETUTSCHNIGG A, et al. Changes in wettability of wood surface using electron beam irradiation[J]. Wood Material Science & Engineering, 2020, 15(4): 237-240.
    [42]
    曹倚中. 低温等离子体改性木质单板高效胶合机理研究[D]. 南京: 南京林业大学, 2020.

    CAO Yizhong. Mechanism of low temperature plasma modified wood veneer to achieve high adhesive efficiency[D]. Nanjing: Nanjing Forestry University, 2020(in Chinese).
    [43]
    CAO Y, HUA H, YANG P, et al. Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose[J]. Carbohydrate Polymers, 2020, 233: 115632. doi: 10.1016/j.carbpol.2019.115632
    [44]
    GALMIZ O, TALVISTE R, PANÁČEK R, et al. Cold atmospheric pressure plasma facilitated nano-structuring of thermally modified wood[J]. Wood Science and Technology, 2019, 53: 1339-1352. doi: 10.1007/s00226-019-01128-6
    [45]
    HUANG Y, WANG J, ZHAN X, et al. Effect of plasma treatment on the surface characteristics and adhesive penetration performance of heat-treated wood[J]. Holzforschung, 2022, 76(10): 941-953. doi: 10.1515/hf-2022-0031
    [46]
    SEDLIAČIKOVÁ M, MORESOVÁ M. Are consumers interested in colored beech wood and furniture products?[J]. Forests, 2022, 13(9): 1470. doi: 10.3390/f13091470
    [47]
    XU J W, LI C C, HUNG K C, et al. Physicomechanical properties of hydrothermally treated Japanese cedar timber and their relationships with chemical compositions[J]. Journal of Materials Research and Technology, 2022, 21: 4982-4993. doi: 10.1016/j.jmrt.2022.11.092
    [48]
    卢翠香, 蒋汇川, 刘媛, 等. 高温热处理对低龄桉树木材颜色变化的影响[J]. 桉树科技, 2021, 38(2): 9-16. doi: 10.13987/j.cnki.askj.2021.02.002

    LU Cuixiang, JIANG Huichuan, LIU Yuan, et al. Effects of high temperature heat-treatment on color variance in young eucalyptus timber[J]. Eucalypt Science & Technology, 2021, 38(2): 9-16(in Chinese). doi: 10.13987/j.cnki.askj.2021.02.002
    [49]
    陈凯文. 基于金属活化的热处理杉木耐光老化性能研究[D]. 南京: 南京林业大学, 2022.

    CHEN Kaiwen. Study on the anti-weathering of heat-treated fir wood (Cunninghamia lanceolate) based on metal activation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese).
    [50]
    HUANG X, KOCAEFE D, KOCAEFE Y, et al. Study of the degradation behavior of heat-treated jack pine (Pinus banksiana) under artificial sunlight irradiation[J]. Polymer Degradation and Stability, 2012, 97(7): 1197-1214. doi: 10.1016/j.polymdegradstab.2012.03.022
    [51]
    ANISH M C, GIRIDHAR B N, NAIR S, et al. Influences of extractives and thermal modification on the UV resistance of Albizia lebbeck wood[J]. Wood Material Science & Engineering, 2023, 18(2): 540-548.
    [52]
    NZOKOU P, KAMDEM D P. Influence of wood extractives on the photo-discoloration of wood surfaces exposed to artificial weathering[J]. Color Research and Application, 2006, 31(5): 425-434.
    [53]
    沈海颖. 热改性木材的光作用机理及其耐光老化性能改良[D]. 北京: 北京林业大学, 2019.

    SHEN Haiying. Study on mechanism of photic action and improvement on anti-weathering properties of thermally-modified wood[D]. Beijing: Beijing Forestry University, 2019(in Chinese).
    [54]
    XING D, WANG S, LI J. Effect of artificial weathering on the properties of industrial-scale thermally modified wood[J]. BioResources, 2015, 10(4): 8238-8252.
    [55]
    NIKAFSHAR S, NEJAD M. Evaluating efficacy of different UV-stabilizers/absorbers in reducing UV-degradation of lignin[J/OL]. Holzforschung: 2021-10-21[2024-01-27]. https://doi.org/10.1515/hf-2021-0147.
    [56]
    PÁNEK M, HÝSEK Š, DVOŘÁK O, et al. Durability of the exterior transparent coatings on nano-photostabilized english oak wood and possibility of its prediction before artificial accelerated weathering[J]. Nanomaterials, 2019, 9(11): 1568. doi: 10.3390/nano9111568
    [57]
    SHEN H, CAO J, JIANG J, et al. Antiweathering properties of a thermally treated wood surface by two-step treatment with titanium dioxide nanoparticle growth and polydimethylsiloxane coating[J]. Progress in Organic Coatings, 2018, 125: 1-7. doi: 10.1016/j.porgcoat.2018.08.011
    [58]
    华杰琼. 基于热处理和氧化锌协同作用的杨木改性研究[D]. 哈尔滨: 东北林业大学, 2016.

    HUA Jieqiong. Modification of Populus adenopoda maxim based on heat treatment and zinc oxide[D]. Harbin: Northeast Forestry University, 2016(in Chinese).
    [59]
    SAEI A M, MOHEBBY B, ABDEH M R. Effects of oleothermal treatment and polydimethylsiloxane (PDMS) coating on natural weathering of beech and fir woods[J]. Maderas Cienciay Tecnología, 2015, 17(4): 905-918.
    [60]
    曲丽洁. 杉木硫酸铝预处理热改性机理及耐老化性能研究[D]. 北京: 北京林业大学, 2021.

    QU Lijie. Study on the thermal modification mechanism and aging resistance property of chinese fir pretreated with aluminum[D]. Beijing: Beijing Forestry University, 2021(in Chinese).
    [61]
    王亚男. 磁控溅射沉积无机纳米薄膜的木材功能性研究[D]. 哈尔滨: 东北林业大学, 2021.

    WANG Yanan. Research on wood function of depositing inorganic nano-film based on magnetron sputtering[D]. Harbin: Northeast Forestry University, 2021(in Chinese).
    [62]
    GEORGE B, SUTTIE E, MERLIN A, et al. Photodegradation and photostabilisation of wood–The state of the art[J]. Polymer Degradation and Stability, 2005, 88(2): 268-274. doi: 10.1016/j.polymdegradstab.2004.10.018
    [63]
    SAHA S, KOCAEFE D, BOLUK Y, et al. Enhancing exterior durability of jack pine by photo-stabilization of acrylic polyurethane coating using bark extract. Part 1: Effect of UV on color change and ATR–FT-IR analysis[J]. Progress in Organic Coatings, 2011, 70(4): 376-382. doi: 10.1016/j.porgcoat.2010.09.034
    [64]
    PENG Y, WANG Y, ZHANG R, et al. Improvement of wood against UV weathering and decay by using plant origin substances: Tannin acid and tung oil[J]. Industrial Crops and Products, 2021, 168: 113606. doi: 10.1016/j.indcrop.2021.113606
    [65]
    程亚飞. 轻度热处理柞木性能变化及改性机制[D]. 南京: 南京林业大学, 2022.

    CHENG Yafei. Mild heat treatment of Mongolian oak wood: Property evaluation and mechanism investigation[D]. Nanjing: Nanjing Forestry University, 2022(in Chinese).
    [66]
    VIITANIEMI P, JAMSA S, EK P, et al. Method for improving biodegradation resistance and dimensional stability of cellulosic products: US patent, 5678324A[S]. 1997-10-21.
    [67]
    HOMAN W, TJEERDSMA B, BECKERS E, et al. Structural and other properties of modified wood[C]//Proceedings of the World Conference on Timber Engineering 2000. British Columbia: World Conference Timber Enginnering, 2000.
    [68]
    VERNOIS M. Heat treatment of wood in France: State of the art[C]//Proceedings of Special Seminar. Antibes: Citeseer, 2001.
    [69]
    RAPP A O. Review on heat treatments of wood[C]//Proceedings of Special Seminar. Antibes: Citeseer, 2001.
    [70]
    刘丽丽, 张宏, 张文标, 等. 熏烟热处理技术在国内及日本的发展与应用研究[J]. 浙江林业科技, 2010, 30(5): 76-81.

    LIU Lili, ZHANG Hong, ZHANG Wenbiao, et al. Research and utilization of smoke heating treatment technology in China and Japan[J]. Journal of Zhejiang Forestry Science and Technology, 2010, 30(5): 76-81(in Chinese).
    [71]
    MITCHELL P H. Irreversible property changes of small Loblolly pine specimens heated in air, nitrogen, or oxygen[J]. Wood and Fiber Science, 1988, 20(3): 320-335.
    [72]
    HILL C, ALTGEN M, RAUTKARI L. Thermal modification of wood—A review: Chemical changes and hygroscopicity[J]. Journal of Materials Science, 2021, 56(11): 6581-6614. doi: 10.1007/s10853-020-05722-z
    [73]
    FENGEL D, WEGENER G. Wood: Chemistry, ultrastructure, reactions[M]. Berlin and New York: Walter de Gruyter, 2011.
    [74]
    WANG X, LUO C, MU J, et al. Effects of aluminum chloride impregnating pretreatment on physical and mechanical properties of heat-treated poplar wood under mild temperature[J]. Forests, 2022, 13(8): 1170. doi: 10.3390/f13081170
    [75]
    GROSSE C, GRIGSBY W J, NOËL M, et al. Optimizing chemical wood modification with oligomeric lactic acid by screening of processing conditions[J]. Journal of Wood Chemistry and Technology, 2019, 39(6): 385-398. doi: 10.1080/02773813.2019.1601739
    [76]
    QU L, WANG Z, QIAN J, et al. Effects of aluminum sulfate soaking pretreatment on dimensional stability and thermostability of heat-treated wood[J]. European Journal of Wood and Wood Products, 2021, 79(1): 189-198. doi: 10.1007/s00107-020-01616-8
    [77]
    QU L, QIAN J, HE L, et al. Improving color stabilization in thermally modified wood by pretreatment with aluminum sulfate vacuum impregnation[J]. European Journal of Wood and Wood Products, 2022, 80(2): 331-343. doi: 10.1007/s00107-021-01760-9
    [78]
    YAN L, MORRELL J J. Kinetic color analysis for assessing the effects of borate and glycerol on thermal modification of wood[J]. Wood Science and Technology, 2019, 53(1): 263-274. doi: 10.1007/s00226-018-1072-4
    [79]
    SIVRIKAYA H, HOSSEINPOURPIA R, AHMED S A, et al. Vacuum-heat treatment of Scots pine (Pinus sylvestris L.) wood pretreated with propanetriol[J]. Wood Material Science & Engineering, 2022, 17(5): 328-336.
    [80]
    YAN L, CHEN Z. Dynamic viscoelastic properties of heat-treated glycerol-impregnated poplar wood[J]. European Journal of Wood and Wood Products, 2018, 76(2): 611-616. doi: 10.1007/s00107-017-1210-y
    [81]
    GAO J, QU L, QIAN J, et al. Effects of combined acid-alkali and heat treatment on the physiochemical structure of Moso bamboo[J]. Scientific Reports, 2020, 10(1): 1-7. doi: 10.1038/s41598-019-56847-4
    [82]
    HE Z, QU L, WANG Z, et al. Effects of zinc chloride-silicone oil treatment on wood dimensional stability, chemical components, thermal decomposition and its mechanism[J]. Scientific Reports, 2019, 9: 1601.
    [83]
    BAYANI S, BAZYAR B, MIRSHOKRAIE S A, et al. Effects of heat treatment on the relative amounts of cellulose in nanosilver-impregnated and untreated poplar wood (Populus alba)[J]. Floresta e Ambiente, 2019, 26(4): e20160398.
    [84]
    TAGHIYARI H R, HOSSEINI G, TARMIAN A, et al. Fluid flow in nanosilver-impregnated heat-treated beech wood in different mediums[J]. Applied Sciences, 2020, 10(6): 1919. doi: 10.3390/app10061919
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(3)

    Article Metrics

    Article views (306) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return