Volume 40 Issue 2
Feb.  2023
Turn off MathJax
Article Contents
XU Shuai, SUN Jiangdong, SUN Pengfei, et al. Flexible and fiber-shaped batteries—A review[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 665-677. doi: 10.13801/j.cnki.fhclxb.20220527.002
Citation: XU Shuai, SUN Jiangdong, SUN Pengfei, et al. Flexible and fiber-shaped batteries—A review[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 665-677. doi: 10.13801/j.cnki.fhclxb.20220527.002

Flexible and fiber-shaped batteries—A review

doi: 10.13801/j.cnki.fhclxb.20220527.002
Funds:  State Key Laboratory of Bio-Fibers and Eco-Textiles (Qingdao University) (KF2020210); Natural Science Foundation of Anhui Province (2008085QE213); Open Project Program of Anhui Engineering and Technology Research Center of Textile (Xjky2020038); Research Funding from Anhui Polytechnic University (2020YQQ044); Open Project Program of Anhui Engineering and Technology Research Center of Textile, Anhui Province College of Anhui Province College Key Laboratory of Textile Fabrics (2021AETKL06)
  • Received Date: 2021-04-01
  • Accepted Date: 2021-05-19
  • Rev Recd Date: 2021-04-27
  • Available Online: 2022-05-28
  • Publish Date: 2023-02-15
  • With low dimensionality, flexibility, shape-adaptable, and high integration with textiles, fiber batteries can meet the energy supply needs of circuit elements of flexible electronics. In recent years, research on fiber batteries has not only focused on active materials composited in electrodes, but exploring multi-functional, scalable, and highly integrated systems of fiber batteries. In addition, certain breakthroughs have been made in the large-scale production of fiber-based batteries, including battery assembly, integration, and continuous production. Based on this, this paper discusses the recent research results of fiber batteries in terms of fiber substrate materials and preparation processes, and it also review the latest breakthroughs in the industrial production of fiber batteries. Finally, this paper summarize the problems in the development of fiber batteries and analyze the key difficulties that need to be overcome in the future.

     

  • loading
  • [1]
    MIN X, SUN B, CHEN S, et al. A textile-based SnO2 ultra-flexible electrode for lithium-ion batteries[J]. Energy Storage Materials,2019,16:597-606. doi: 10.1016/j.ensm.2018.08.002
    [2]
    LIANG S, YAN W, WU X, et al. Gel polymer electrolytes for lithium ion batteries: Fabrication, characterization and performance[J]. Solid State Ionics,2018,318:2-18. doi: 10.1016/j.ssi.2017.12.023
    [3]
    CHO Y G, HWANG C, CHEONG D S, et al. Gel/solid polymer electrolytes characterized by in situ gelation or polymerization for electrochemical energy systems[J]. Advanced Materials,2019,31(20):1804909. doi: 10.1002/adma.201804909
    [4]
    CHOI Y S, PHARR M, OH K H, et al. A simple technique for measuring the fracture energy of lithiated thin-film silicon electrodes at various lithium concentrations[J]. Journal of Power Sources,2015,294:159-166. doi: 10.1016/j.jpowsour.2015.06.063
    [5]
    NOSSOL E, SOUZA V H R, ZARBIN A J G. Carbon nano-tube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery[J]. Journal of Colloid and Interface Science,2016,478:107-116. doi: 10.1016/j.jcis.2016.05.056
    [6]
    YU C, LI X, MA T, et al. Silicon thin films as anodes for high-performance lithium-ion batteries with effective stress relaxation[J]. Advanced Energy Materials,2012,2(1):68-73. doi: 10.1002/aenm.201100634
    [7]
    KWON Y H, WOO S W, JUNG H R, et al. Cable-type flexible lithium ion battery based on hollow multi-helix electrodes[J]. Advanced Materials,2012,24(38):5192-5197. doi: 10.1002/adma.201202196
    [8]
    LIU R, LIU Y, CHEN J, et al. Flexible wire-shaped lithium-sulfur batteries with fibrous cathodes assembled via capillary action[J]. Nano Energy,2017,33:325-333. doi: 10.1016/j.nanoen.2016.12.049
    [9]
    ZHANG Y, JIAO Y, LU L, et al. An ultraflexible silicon-oxygen battery fiber with high energy density[J]. Angewandte Chemie International Edition,2017,56(44):13741-13746. doi: 10.1002/anie.201707840
    [10]
    LI Y, ZHOU J, ZHANG T, et al. Highly surface-wrinkled and N-doped CNTs anchored on metal wire: A Novel fiber-shaped cathode toward high-performance flexible Li-CO2 batteries[J]. Advanced Functional Materials,2019,29(12):1808117. doi: 10.1002/adfm.201808117
    [11]
    WENG W, SUN Q, ZHANG Y, et al. Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances[J]. Nano Letters,2014,14(6):3432-3438. doi: 10.1021/nl5009647
    [12]
    LIN X, KANG Q, ZHANG Z, et al. Industrially weavable metal/cotton yarn air electrodes for highly flexible and stable wire-shaped Li-O2 batteries[J]. Journal of Materials Chemistry A,2017,5(7):3638-3644. doi: 10.1039/C6TA09806A
    [13]
    SONG H, JEON S Y, JEONG Y. Fabrication of a coaxial high performance fiber lithium-ion battery supported by a cotton yarn electrolyte reservoir[J]. Carbon,2019,147:441-450. doi: 10.1016/j.carbon.2019.02.081
    [14]
    WANG Z, RUAN Z, LIU Z, et al. A flexible rechargeable zinc-ion wire-shaped battery with shape memory function[J]. Journal of Materials Chemistry A,2018,6(18):8549-8557. doi: 10.1039/C8TA01172A
    [15]
    ZENG Y, MENG Y, LAI Z, et al. An ultrastable and high-performance flexible fiber-shaped Ni-Zn battery based on a Ni-NiO heterostructured nanosheet cathode[J]. Advanced Materials,2017,29(44):1702698. doi: 10.1002/adma.201702698
    [16]
    LI M, LI Z, YE X, et al. Tendril-inspired 900% ultrastretching fiber-based Zn-ion batteries for wearable energy textiles[J]. ACS Applied Materials & Interfaces,2021,13(14):17110-17117.
    [17]
    SUBJALEARNDEE N, HE N, CHENG H, et al. Gamma(γ)-MnO2/rGO fibered cathode fabrication from wet spinning and dip coating techniques for cable-shaped Zn-ion batteries[J]. Advanced Fiber Materials,2022, 4 (3):1-18.
    [18]
    YI H, MA Y, ZHANG S, et al. Robust aqueous Zn-ion fiber battery based on high-strength cellulose yarns[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18894-18900.
    [19]
    WU M, XIA Z, MAO Z, et al. Stretchable Ni-Zn fabric battery based on sewable core-shell SCNF@Ni@NiCo LDHs thread cathode for wearable smart garment[J]. Journal of Materials Science,2021,56(17):10537-10554. doi: 10.1007/s10853-021-05936-9
    [20]
    LEE J M, CHUN S, SON W, et al. DNA-inspired, highly packed supercoil battery for ultra-high stretchability and capacity[J]. Nano Energy,2021,85:106034. doi: 10.1016/j.nanoen.2021.106034
    [21]
    CONG Z, GUO W, ZHANG P, et al. Wearable antifreezing fiber-shaped Zn/PANI batteries with suppressed Zn dendrites and operation in sweat electrolytes[J]. ACS Applied Materials & Interfaces,2021,13(15):17608-17617.
    [22]
    LI Q, JING S, YONG Z, et al. Towards ultrahigh-energy-density flexible aqueous rechargeable Ni//Bi batteries: Free-standing hierarchical nanowire arrays core-shell heterostructures system[J]. Energy Storage Materials,2021,42:815-825. doi: 10.1016/j.ensm.2021.08.032
    [23]
    YU X, FU Y, CAI X, et al. Flexible fiber-type zinc-carbon battery based on carbon fiber electrodes[J]. Nano Energy,2013,2(6):1242-1248. doi: 10.1016/j.nanoen.2013.06.002
    [24]
    LI C, ZHANG Q, SONG F, et al. An ultra-high endurance and high-performance quasi-solid-state fiber-shaped Zn-Ag2O battery to harvest wind energy[J]. Journal of Materials Chemistry A,2019,7(5):2034-2040. doi: 10.1039/C8TA10807B
    [25]
    MAN P, HE B, ZHANG Q, et al. A one-dimensional channel self-standing MOF cathode for ultrahigh-energy-density flexible Ni-Zn batteries[J]. Journal of Materials Chemistry A,2019,7(48):27217-27224. doi: 10.1039/C9TA11759H
    [26]
    LU Y, ZHANG H, LIU H, et al. Electrolyte dynamics engi-neering for flexible fiber-shaped aqueous zinc-ion battery with ultralong stability[J]. Nano Letters,2021,21(22):9651-9660. doi: 10.1021/acs.nanolett.1c03455
    [27]
    LIU G, KIM J Y, WANG M, et al. Soft, highly elastic, and discharge-current-controllable eutectic gallium-indium liquid metal-air battery operated at room temperature[J]. Advanced Energy Materials,2018,8(16):1703652. doi: 10.1002/aenm.201703652
    [28]
    FU H, LIU G, XIONG L, et al. A shape-variable, low-temperature liquid metal-conductive polymer aqueous secondary battery[J]. Advanced Functional Materials,2021,31(50):2107062. doi: 10.1002/adfm.202107062
    [29]
    LI H, YANG J, CHENG J, et al. Flexible aqueous ammonium-ion full cell with high rate capability and long cycle life[J]. Nano Energy,2020,68:104369. doi: 10.1016/j.nanoen.2019.104369
    [30]
    XU Y, ZHAO Y, REN J, et al. An all-solid-state fiber-shaped aluminum-air battery with flexibility, stretchability, and high electrochemical performance[J]. Angewandte Chemie International Edtion,2016,55(28):7979-7982. doi: 10.1002/anie.201601804
    [31]
    WANG H, ZHANG S, DENG C. In situ encapsulating metal oxides into core-shell hierarchical hybrid fibers for flexible zinc-ion batteries toward high durability and ultrafast capability for wearable applications[J]. ACS Applied Materials & Interfaces,2019,11(39):35796-35808.
    [32]
    ZHAI S, WANG N, TAN X, et al. Interface-engineered dendrite-free anode and ultraconductive cathode for durable and high-rate fiber Zn dual-ion microbattery[J]. Advanced Functional Materials,2021,31(13):2008894. doi: 10.1002/adfm.202008894
    [33]
    WANG Y, CHEN C, XIE H, et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage[J]. Advanced Functional Materials,2017,27(43):1703140. doi: 10.1002/adfm.201703140
    [34]
    HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature,2021,597(7874):57-63. doi: 10.1038/s41586-021-03772-0
    [35]
    LIU Y, GORGUTSA S, SANTATO C, et al. Flexible, solid electrolyte-based lithium battery composed of LiFePO4 cathode and Li4Ti5O12 anode for applications in smart textiles[J]. Journal of the Electrochemical Society,2012,159(4):A349-A356. doi: 10.1149/2.020204jes
    [36]
    LIAO M, WANG C, HONG Y, et al. Industrial scale production of fibre batteries by a solution-extrusion method[J]. Nature Nanotechnology,2022, 17 (4):1-6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article Metrics

    Article views (1076) PDF downloads(116) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return