Citation: | ZENG Siheng, WANG Xin, WU Zhishen, et al. Preparation and performance of highly conductive polypyrrole-modified basalt fiber[J]. Acta Materiae Compositae Sinica, 2025, 42(2): 723-736. DOI: 10.13801/j.cnki.fhclxb.20240524.001 |
Basalt fibers (BF) possess outstanding mechanical properties, corrosion resistance, and thermal stability, making them widely utilized in various sectors of the national economy. However, due to the insulating nature of basalt fibers, their application in areas such as electromagnetic shielding and electrostatic protection is limited. The investigation introduces a method for preparing conductive basalt fibers, which not only enhances the conductivity of basalt fibers but also improves the tensile strength. It is an efficient, low-cost, and environmentally friendly preparation method. The method utilizes pyrrole monomers (Py), iron chloride oxidant (FeCl3), and the dopant sodium 5-sulfosalicylate (NaSSA) as raw materials. Conductive polypyrrole (PPy) is deposited on the surface of basalt fibers through in-situ polymerization. Different concentrations of Py, FeCl3 and NaSSA are investigated as parameters to study their effects on the conductivity of basalt fibers. Through the in-situ polymerization method, basalt fibers gradually change from brown to black, with a uniform, stable, and thick polypyrrole coating on the surface. The polypyrrole particles exhibit a high doping level, bipolaron ratio, and conjugated chain length, indicating a well-defined structure. In terms of electrical conductivity, the resistance of polypyrrole-modified basalt fibers decreases to a minimum of 8×10−3 Ω·cm, demonstrating excellent conductivity after modification. In terms of mechanical properties, the tensile strength of the fibers is maximally increased by 20.6%, highlighting the significant advantages of the method in preserving fiber structure and enhancing fiber mechanical performance. It was verified by variability analysis and Weibull distribution modeling. The investigation provides a new opportunity for expanding the application of basalt fibers and achieving functionalized basalt fiber composite materials.
[1] |
吴智深, 汪昕, 史健喆. 玄武岩纤维复合材料性能提升及其新型结构[J]. 工程力学, 2020, 37(5): 1-14.
WU Zhishen, WANG Xin, SHI Jianzhe. Performance enhancement of basalt fiber composite materials and their novel structures[J]. Engineering Mechanics, 2020, 37(5): 1-14(in Chinese).
|
[2] |
郭耀东, 刘元珍, 王文婧, 等. 玄武岩纤维特征参数对混凝土单轴受拉性能的影响[J]. 复合材料学报, 2023, 40(5): 2897-2912.
GUO Yaodong, LIU Yuanzhen, WANG Wenjing, et al. Influence of basalt fiber characteristic parameters on tensile performance of concrete[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2897-2912(in Chinese).
|
[3] |
叶国锐, 晏义伍, 曹海琳. 氧化石墨烯改性玄武岩纤维及其增强环氧树脂复合材料性能[J]. 复合材料学报, 2014, 31(6): 1402-1408.
YE Guorui, YAN Yiwu, CAO Hailin. Properties of oxidized graphene-modified basalt fiber and its reinforced epoxy resin composite[J]. Acta Materiae Compositae Sinica, 2014, 31(6): 1402-1408(in Chinese).
|
[4] |
曹升虎, 吴智深, 马凯, 等. 混杂碳纤维/玄武岩纤维塑料筋的张拉力学性能[J]. 玻璃钢/复合材料, 2014(8): 83-87.
CAO Shenghu, WU Zhishen, MA Kai, et al. Tensile mechanical properties of hybrid carbon fiber/basalt fiber plastic rebar[J]. Fiberglass/Composites, 2014(8): 83-87(in Chinese).
|
[5] |
许星, 张金才, 王宝凤, 等. 玄武岩纤维表面改性的研究进展[J]. 硅酸盐通报, 2023, 42(2): 575-586, 606. DOI: 10.3969/j.issn.1001-1625.2023.2.gsytb202302021
XU Xing, ZHANG Jincai, WANG Baofeng, et al. Research progress on surface modification of basalt fibers[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(2): 575-586, 606(in Chinese). DOI: 10.3969/j.issn.1001-1625.2023.2.gsytb202302021
|
[6] |
张建伟, 佘希林, 刘嘉麒, 等. 连续玄武岩纤维新材料的制备、性能及应用[J]. 材料导报, 2023, 37(11): 234-240. DOI: 10.11896/cldb.22010106
ZHANG Jianwei, SHE Xilin, LIU Jiaqi, et al. Preparation, properties, and applications of continuous basalt fiber new materials[J]. Materials Reports, 2023, 37(11): 234-240(in Chinese). DOI: 10.11896/cldb.22010106
|
[7] |
胡显奇, 申屠年. 连续玄武岩纤维在军工及民用领域的应用[J]. 高科技纤维与应用, 2005, 30(6): 7-13. DOI: 10.3969/j.issn.1007-9815.2005.06.002
HU Xianqi, SHEN Tunian. Applications of continuous basalt fibers in military and civil fields[J]. High-Tech Fibers & Applications, 2005, 30(6): 7-13(in Chinese). DOI: 10.3969/j.issn.1007-9815.2005.06.002
|
[8] |
齐风杰, 李锦文, 李传校, 等. 连续玄武岩纤维研究综述[J]. 高科技纤维与应用, 2006, 31(2): 42-46. DOI: 10.3969/j.issn.1007-9815.2006.02.010
QI Fengjie, LI Jinwen, LI Chuanxiao, et al. A review of research on continuous basalt fibers[J]. High-Tech Fibers & Applications, 2006, 31(2): 42-46(in Chinese). DOI: 10.3969/j.issn.1007-9815.2006.02.010
|
[9] |
刘顺华, 郭辉进. 电磁屏蔽与吸波材料[J]. 功能材料与器件学报, 2002, 8(3): 213-217. DOI: 10.3969/j.issn.1007-4252.2002.03.001
LIU Shunhua, GUO Huijin. Electromagnetic shielding and absorbing materials[J]. Journal of Functional Materials and Devices, 2002, 8(3): 213-217(in Chinese). DOI: 10.3969/j.issn.1007-4252.2002.03.001
|
[10] |
谭文军, 郑直, 何伟伟, 等. 导电改性玄武岩纤维布、低绝缘性玄武岩纤维增强高分子复合材料及其制备方法: CN202111000433.3[P]. 2021-12-28.
TAN Wenjun, ZHENG Zhi, HE Weiwei, et al. Electrically conductive modified basalt fiber cloth, low-insulation basalt fiber reinforced polymer composite, and its preparation method: CN202111000433.3[P]. 2021-12-28(in Chinese).
|
[11] |
冯倩倩, 朱方龙. 聚合物辅助沉积法制备导电玄武岩纤维[J]. 复合材料科学与工程, 2022(7): 99-102, 114.
FENG Qianqian, ZHU Fanglong. Preparation of conductive basalt fibers by polymer-assisted deposition method[J]. Composite Materials Science and Engineering, 2022(7): 99-102, 114(in Chinese).
|
[12] |
马鹏程, 郝斌, 葸雄宇, 等. 一种导电玄武岩纤维材料的制备方法: CN201810132995.5[P]. 2018-06-29.
MA Pengcheng, HAO Bin, XI Xiongyu, et al. A method for preparing conductive basalt fiber material: CN201810132995.5[P]. 2018-06-29(in Chinese).
|
[13] |
何青青, 徐红, 毛志平, 等. 高导电性聚吡咯涂层织物的制备[J]. 纺织学报, 2019, 40(10): 113-119.
HE Qingqing, XU Hong, MAO Zhiping, et al. Preparation of highly conductive polypyrrole-coated fabric[J]. Journal of Textile Research, 2019, 40(10): 113-119(in Chinese).
|
[14] |
YUAN L, YAO B, HU B, et al. Polypyrrole-coated paper for flexible solid-state energy storage[J]. Energy & Environmental Science, 2013, 6(2): 470-476.
|
[15] |
WAN C, JIAO Y, LI J. Flexible, highly conductive, and free-standing reduced graphen oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes[J]. Journal of Materials Chemistry A, 2017, 5(8): 3819-3831. DOI: 10.1039/C6TA04844G
|
[16] |
CHEN L, LI D, CHEN L, et al. Core-shell structured carbon nanofibers yarn@polypyrrole@graphene for high performance all-solid-state fiber supercapacitors[J]. Carbon, 2018, 138: 264-270. DOI: 10.1016/j.carbon.2018.06.022
|
[17] |
LU Z, LI D, YUAN Z. Polypyrrole coating on aramid fabrics for improved stab resistance and multifunction[J]. Journal of Engineered Fibers and Fabrics, 2022, 17: 1-10.
|
[18] |
李冬梅, 李涛, 张大成, 等. 聚吡咯带电态几何结构特征[J]. 原子与分子物理学报, 2004, 21(1): 105-110. DOI: 10.3969/j.issn.1000-0364.2004.01.023
LI Dongmei, LI Tao, ZHANG Dacheng, et al. Geometric characteristics of charged states of polypyrrole[J]. Journal of Atomic and Molecular Physics, 2004, 21(1): 105-110(in Chinese). DOI: 10.3969/j.issn.1000-0364.2004.01.023
|
[19] |
ZHUANG Q, LI W, ZHU Z, et al. Facile growth of hierarchical SnO2@PPy composites on carbon cloth as all-solid-state flexible supercapacitors[J]. Journal of Alloys and Compounds, 2022, 906: 164275. DOI: 10.1016/j.jallcom.2022.164275
|
[20] |
LYU J, ZHANG L, ZHONG Y, et al. High-performance polypyrrole coated knitted cotton fabric electrodes for wearable energy storage[J]. Organic Electronics, 2019, 74: 59-68. DOI: 10.1016/j.orgel.2019.06.027
|
[21] |
VARESANO A, BELLUATI A, SANCHEZ RAMIREZ D O, et al. A systematic study on the effects of doping agents on polypyrrole coating of fabrics[J]. Journal of Applied Polymer Science, 2016, 133(1): 42831. DOI: 10.1002/app.42831
|
[22] |
彭章. 石墨烯/聚吡咯复合材料的制备及在磷酸钙骨水泥中的应用[D]. 成都: 西南交通大学, 2015.
PENG Zhang. Preparation of graphene/polypyrrole composite materials and their application in calcium phosphate bone cement[D]. Chengdu: Southwest Jiaotong University, 2015(in Chinese).
|
[23] |
何青青. 高导电性聚吡咯涂层织物的制备及性能研究[D]. 上海: 东华大学, 2019.
HE Qingqing. Preparation and properties research of highly conductive polypyrrole-coated fabric[D]. Shanghai: Donghua University, 2019(in Chinese).
|
[24] |
全国碳纤维标准化技术委员会. 碳纤维 单丝拉伸性能的测定: GB/T 31290—2022[S]. 北京: 中国标准出版社, 2022.
National Technical Committee for Standardization of Carbon Fiber. Determination of the tensile properties of carbon fiber monofilaments: GB/T 31290—2022[S]. Beijing: Standards Press of China, 2022(in Chinese).
|
[25] |
吕秋丰, 翁志勇. 聚吡咯纳米颗粒的静态法合成及表征[J]. 高分子学报, 2009(6): 513-519. DOI: 10.3321/j.issn:1000-3304.2009.06.003
LYU Qiufeng, WENG Zhiyong. Static synthesis and characterization of polypyrrole nanoparticles[J]. Acta Polymerica Sinica, 2009(6): 513-519(in Chinese). DOI: 10.3321/j.issn:1000-3304.2009.06.003
|
[26] |
CHEN J N, ZHAO S P, HU W H, et al. Vinyl ester resin nanocomposites reinforced with carbon nanotubes modified basalt fibers[J]. Science of Advanced Materials, 2019, 11(9): 1340-1347. DOI: 10.1166/sam.2019.3558
|
[27] |
ZHU J, XU Y, WANG J, et al. Morphology controllable nano-sheet polypyrrole-graphene composites for high-rate supercapacitor[J]. Physical Chemistry Chemical Physics, 2015, 17(30): 19885-19894. DOI: 10.1039/C5CP02710A
|
[28] |
ZHANG B, ZHOU P, XU Y, et al. Gravity-assisted synthesis of micro/nano-structured polypyrrole for supercapacitors[J]. Chemical Engineering Journal, 2017, 330: 1060-1067. DOI: 10.1016/j.cej.2017.07.183
|
[29] |
LYU J, ZHOU P, ZHANG L, et al. High-performance textile electrodes for wearable electronics obtained by an improved in situ polymerization method[J]. Chemical Engineering Journal, 2019, 361: 897-907. DOI: 10.1016/j.cej.2018.12.083
|
[30] |
MARÁKOVÁ N, HUMPOLÍČEK P, KAŠPÁRKOVÁ V, et al. Antimicrobial activity and cytotoxicity of cotton fabric coated with conducting polymers, polyaniline or polypyrrole, and with deposited silver nanoparticles[J]. Applied Surface Science, 2017, 396: 169-176. DOI: 10.1016/j.apsusc.2016.11.024
|
[31] |
NIE X, JI B, CHEN N, et al. Gradient doped polymer nanowire for moistelectric nanogenerator[J]. Nano Energy, 2018, 46: 297-304. DOI: 10.1016/j.nanoen.2018.02.012
|
[32] |
DAUGINET-DE PRA L, DEMOUSTIER-CHAMPAGNE S. Investigation of the electronic structure and spectroelectrochemical properties of conductive polymer nanotube arrays[J]. Polymer, 2005, 46(5): 1583-1594. DOI: 10.1016/j.polymer.2004.12.016
|
[33] |
韩宝国, 关新春, 欧进萍. 纳米氧化钛与碳纤维水泥石的电阻率及压敏性[J]. 硅酸盐学报, 2004, 32(7): 884-887. DOI: 10.3321/j.issn:0454-5648.2004.07.019
HAN Baoguo, GUAN Xinchun, OU Jinping. Electrical resistivity and piezoresistivity of nano-titanium dioxide and carbon fiber cement composites[J]. Journal of the Chinese Ceramic Society, 2004, 32(7): 884-887(in Chinese). DOI: 10.3321/j.issn:0454-5648.2004.07.019
|
[34] |
赵栩欣, 欧忠文, 莫金川. 玄武岩纤维与其他纤维的单丝强度及强度分布对比分析[J]. 建筑技术开发, 2013, 40(1): 17-19. DOI: 10.3969/j.issn.1001-523X.2013.01.008
ZHAO Xuxin, OU Zhongwen, MO Jinchuan. Comparative analysis of monofilament strength and strength distribution of basalt fiber and other fibers[J]. Construction Technology Development, 2013, 40(1): 17-19(in Chinese). DOI: 10.3969/j.issn.1001-523X.2013.01.008
|
[35] |
王明超, 张佐光, 孙志杰, 等. 玄武岩纤维丝束强度的Weibull和Gauss分布统计分析[J]. 复合材料学报, 2008, 25(3): 105-109. DOI: 10.3321/j.issn:1000-3851.2008.03.018
WANG Mingchao, ZHANG Zuoguang, SUN Zhijie, et al. Statistical analysis of Weibull and Gauss distribution of basalt fiber tow strength[J]. Acta Materiae Compositae Sinica, 2008, 25(3): 105-109(in Chinese). DOI: 10.3321/j.issn:1000-3851.2008.03.018
|
[36] |
王小飞, 邱海鹏, 陈明伟. Nextel 720陶瓷纤维拉伸强度的韦布尔统计分析研究[J]. 陶瓷学报, 2020, 41(5): 715-721.
WANG Xiaofei, QIU Haipeng, CHEN Mingwei. Weibull statistical analysis study of tensile strength of Nextel 720 ceramic fibers[J]. Journal of Ceramics, 2020, 41(5): 715-721(in Chinese).
|