YANG Mingyan, CHEN Xinyue, ZHANG Xiao, et al. Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4889-4897. DOI: 10.13801/j.cnki.fhclxb.20211018.002
Citation: YANG Mingyan, CHEN Xinyue, ZHANG Xiao, et al. Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4889-4897. DOI: 10.13801/j.cnki.fhclxb.20211018.002

Preparation and properties of dialdehyde cellulose/polyvinyl alcohol composite hydrogel

More Information
  • Received Date: August 30, 2021
  • Revised Date: September 21, 2021
  • Accepted Date: September 30, 2021
  • Available Online: October 18, 2021
  • Wheat straw was used as raw material to prepare lignin containing 2,3-dialdehyde cellulose (DAC) through sequential treatment of p-toluenesulfonic acid (p-TsOH), ultrasonication, sodium periodate oxidation. DAC was used as crosslinker to prepare 2,3-dialdehyde cellulose/polyvinyl alcohol (DAC/PVA) composite hydrogel through aldol condensation reaction. The microstructures, swelling properties, compression resistance and thermal stability of hydrogels were studied. Ampicillin (AP) was introduced to DAC/PVA composite hydrogel by embedding method to prepare DAC/PVA-AP hydrogel. Drug release process, release mechanism and antibacterial effect were studied as well. The results show that the microstructures of DAC/PVA composite hydrogels show a porous 3D network structure, and the crosslinking density increases with the increase of DAC. The water content and swelling property of composite hydrogel decrease with the increase of DAC. When the DAC concentration increases from 0.8wt% to 2.0wt%, the water absorption swelling rate decreases from 1823.54%±13.89% to 1105.41%±7.06%. The initial compressive strength of 1.0wt%DAC/PVA hydrogel reaches 5.765 MPa under 70% compression strain and present strong compression resistance. After sterilization at 121℃, the composite hydrogels can keep intact morphology, indicating that they have excellent high temperature resistance. The release model of DAC/PVA-AP hydrogel conforms to the Korsmeyer-Peppas model, and the sustained-release solution has a good antibacterial effect on the test bacteria. The DAC/PVA composite hydrogel prepared from wheat straw has a three-dimensional network structure, good mechanical properties and high temperature resistance, and has potential application the field of wound dressings.
  • [1]
    SAU Y C, YUKKEE C P, ANNE-CELIINE K, et al. Additive manufacturing of hydrogel-based materials for next-generation implantable medical devices[J]. Science Robotics,2017,2(2):eaah 6451. DOI: 10.1126/scirobotics.aah6451
    [2]
    JINAH K, ANTHONY C, ANUJ C. Extended delivery of ophthalmic drugs by silicone hydrogel contact lenses[J]. Biomaterials,2008,29(14):2259-2269. DOI: 10.1016/j.biomaterials.2008.01.030
    [3]
    ELSNER J J, BERDICEVSKY I, ZILBERMAN M. In vitro microbial inhibition and cellular response to novel biodegradable composite wound dressings with controlled release of antibiotics[J]. Acta Biomaterialia,2011,7(1):325-336. DOI: 10.1016/j.actbio.2010.07.013
    [4]
    ELBADAWY A K, ELREFAUE S K, CHEN X. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings[J]. Journal of Advanced Research,2017,8(3):217-233. DOI: 10.1016/j.jare.2017.01.005
    [5]
    韩颖, 徐玉茵, 田林奇, 等. 聚乙烯醇基水凝胶敷料的研究进展[J]. 中国医疗器械杂志, 2018, 42(6):437-439, 443. DOI: 10.3969/j.issn.1671-7104.2018.06.013

    HAN Ying, XU Yuyin, TIAN Linqi, et al. Research progress of polyvinyl alcohol-based hydrogel dressing[J]. Chinese Journal of Medical Devices,2018,42(6):437-439, 443(in Chinese). DOI: 10.3969/j.issn.1671-7104.2018.06.013
    [6]
    AMIRALIAN N, ANNA P K, MEMMOTT P, et al. Isolation of cellulo senanofibrils from Triodia pungens via different mechanical methods[J]. Cellulose,2015,22(4):2483-2498. DOI: 10.1007/s10570-015-0688-x
    [7]
    ABITBOL T, JOHNSTONE T, THOMOS M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter,2011,7(6):2373-2379. DOI: 10.1039/c0sm01172j
    [8]
    CHANG C Y, ANG L, ZHANG L N. Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels[J]. Macromolecular Chemistry and Physics,2008,209(12):1266-1273. DOI: 10.1002/macp.200800161
    [9]
    陆升, 程绍玲. 交联NFC/PVA水凝胶的制备及对重金属吸附研究[J]. 山西大学学报(自然科学版), 2020, 43(2):377-384. DOI: 10.13451/j.sxu.ns.2019035

    LU Sheng, CHENG Shaoling. Preparation and adsorption properties of heavy metal ions of crosslinked NFC/PVA hydrogels[J]. Journal of Shanxi University (Natural Science Edition),2020,43(2):377-384(in Chinese). DOI: 10.13451/j.sxu.ns.2019035
    [10]
    BIAN H Y, JIAO L, WANG R B, et al. Lignin nanoparticles as nano-spacers for tuning the viscoelasticity of cellulose nanofibril reinforced polyvinyl alcohol-borax hydrogel[J]. European Polymer Journal,2018,107:267-274. DOI: 10.1016/j.eurpolymj.2018.08.028
    [11]
    LUKAS M, JAN V, JIRI K, et al. Dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels: Influence of catalyst and crosslinker shelf life[J]. Carbohydrate Polymers,2018,198:181-190. DOI: 10.1016/j.carbpol.2018.06.035
    [12]
    MONIKA M, LUKAS M, ZDENKA C, et al. Design of dialdehyde cellulose crosslinked poly(vinyl alcohol) hydrogels for transdermal drug delivery and wound dressings[J]. Materials Science and Engineering C,2020,116:111242. DOI: 10.1016/j.msec.2020.111242
    [13]
    UNG K, YEONG R L, KANG T H K, et al. Protein adsorption of dialdehyde cellulose-crosslinked chitosan with high amino group contents[J]. Carbohydrate Polymers,2017,163:34-42. DOI: 10.1016/j.carbpol.2017.01.052
    [14]
    DOU J, BIAN H, YELLE D J, et al. Lignin containing cellulose nanofibril production from willow bark at 80°C using a highly recyclable acid hydrotrope[J]. Industrial Crops and Products,2019,129:15-23. DOI: 10.1016/j.indcrop.2018.11.033
    [15]
    BIAN H, CHEN L, DAI H, et al. Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable dicarboxylic acid[J]. Carbohydrate Polymers,2017,167:167-176. DOI: 10.1016/j.carbpol.2017.03.050
    [16]
    YANG M Y, ZHANG X, GUAN S Y, et al. Preparation of lignin containing cellulose nanofibers and its application in PVA nanocomposite films[J]. International Journal of Biological Macromolecules,2020,158(3):1259-1267. DOI: 10.1016/j.ijbiomac.2020.05.044
    [17]
    YAN G, ZHANG X, LI M, et al. Stability of soluble dialdehyde cellulose and the formation of hollow microspheres: Optimization and characterization[J]. ACS Sustainable Chemistry & Engineering,2019,7(2):2151-2159. DOI: 10.1021/acssuschemeng.8b04825
    [18]
    CHEN G, ZHANG Y, XU D K, et al. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650°C[J]. Materials Science and Engineering: A,2016,655:175-182. DOI: 10.1016/j.msea.2015.12.096
    [19]
    SHAN Y, LEI J C, CHEN S C, et al. Development of gelatin/bacterial cellulose composite sponges as potential natural wound dressings[J]. International Journal of Biological Macromolecules,2019,133:148-155. DOI: 10.1016/j.ijbiomac.2019.04.095
    [20]
    赵春杰, 何春馥, 张薇薇, 等. 紫外分光光度法测定尿中氨苄青霉素的浓度[J]. 沈阳药学院学报, 1988(1):49-52.

    ZHAO Chunjie, HE Chunfu, ZHANG Weiwei, et al. Determination of ampicillin in urine by ultraviolet spectrophotometry[J]. Journal of Shenyang Pharmaceutical College,1988(1):49-52(in Chinese).
    [21]
    吕苗苗. 功能化双醛纤维素的制备与性能研究[D]. 天津: 天津大学, 2018: 12-13.

    LV Miaomiao. Preparation and properties of functionalized dialdehyde cellulose[D]. Tianjin: Tianjin University, 2018: 12-13(in Chinese).
    [22]
    徐朝阳, 李健昱, 石小梅, 等. 聚乙二醇改性纳米纤维素/聚乙烯醇复合水凝胶的制备及性能[J]. 复合材料学报, 2017, 34(4):708-713. DOI: 10.13801/j.cnki.fhclxb.20160819.001

    XU Zhaoyang, LI Jianyu, SHI Xiaomei, et al. Preparation and properties of polyethylene glycol modified nanocellulosic/polyvinyl alcohol composite hydrogel[J]. Acta Materiae Compositae Sinica,2017,34(4):708-713(in Chinese). DOI: 10.13801/j.cnki.fhclxb.20160819.001
    [23]
    ZHU L X, LIU Y, JIANG Z M, et al. Highly temperature resistant cellulose nanofiber/polyvinyl alcohol hydrogel using aldehyde cellulose nanofiber as cross-linker[J]. Cellulose,2019,26:5291-5303. DOI: 10.1007/s10570-019-02435-8
    [24]
    CUI Q, ZHENG Y, LIN Q, et al. Selective oxidation of bacterial cellulose by NO2-HNO3[J]. RSC Advances,2013,4(4):1630-1639. DOI: 10.1039/C3RA44516J
    [25]
    ZHU L X, QIU J H, SAKAI E, et al. Rapid recovery double cross-linking hydrogel with stable mechanical properties and high resilience triggered by visible light[J]. ACS Applied Materials & Interfaces,2017,9(15):13593-13601. DOI: 10.1021/acsami.7b01003
    [26]
    ZHU L X, QIU J H, SAKAI E, et al. Design of a rubbery carboxymethyl cellulose/polyacrylic acid hydrogel via visible-light-triggered polymerization[J]. Macromolecular Materials and Engineering,2017,302(6):513-520. DOI: 10.1002/mame.201600509
    [27]
    NAIRI V, MEDDA L, MONDUZZI M, et al. Adsorption and release of ampicillin antibiotic from ordered mesoporous silica[J]. Journal of Colloid and Interface Science,2017,497:217-225. DOI: 10.1016/j.jcis.2017.03.021
  • Related Articles

    [1]HU Die, LIU Tao, GAO Fulei, DING Xinbo. Preparation and properties of polycaprolactone-gelatin-bioglass-based asymmetrically infiltrated sandwich-structured composite membranes[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3396-3407.
    [2]ZHAO Xiyang, KANG Xitong, LIU Huansheng, LIU Tao, WANG Qingwen. Preparation and characterization of tannic acid-ferric chloride-polyACG composite hydrogel microneedle patch[J]. Acta Materiae Compositae Sinica, 2025, 42(6): 3387-3395.
    [3]YUE Cancan, ZHAO Hongpeng, LIU Wensen, XU Na, ZHANG Shuhua, XI Yanli. Preparation and characterization of a new pH-responsive hydrogel with bacteriostatic properties[J]. Acta Materiae Compositae Sinica, 2024, 41(12): 6702-6712. DOI: 10.13801/j.cnki.fhclxb.20240426.002
    [4]WU Xiaona, WANG Yiyu, ZHAO Kai. MXene and its composite hydrogel application in infective wound healing[J]. Acta Materiae Compositae Sinica, 2024, 41(7): 3431-3445. DOI: 10.13801/j.cnki.fhclxb.20231214.001
    [5]XU Mi, ZHANG Liang, HE Zhixian. Preparation and characterization of Basil essential oil nanoparticles/polyvinylpyrrolidone-polyvinyl alcohol hydrogel wound dressing[J]. Acta Materiae Compositae Sinica, 2024, 41(2): 748-760. DOI: 10.13801/j.cnki.fhclxb.20230629.002
    [6]DUAN Bingchao, HAO Hongdan, HE Yule, WANG Lan, WANG Huanfeng, WANG Yufei, LU Kui, CHAO Quanchao, LI Yunyun, WANG Min. Preparation and characterization of tannin/fibroin protein photothermal composite hydrogel[J]. Acta Materiae Compositae Sinica.
    [7]CHEN Kai, CHAI Qi, WANG Fengyan, FENG Cun'ao, ZHANG Dekun. Construction and characterization of silver-loaded polyvinyl alcohol-carboxymethyl chitosan-sodium alginate hydrogel wound dressing based on 3D printing[J]. Acta Materiae Compositae Sinica, 2022, 39(12): 5879-5891. DOI: 10.13801/j.cnki.fhclxb.20220120.010
    [8]MENG Xiangsheng, LI Hongshen, YANG Huili, FAN Weifeng, LIU Jingfeng, ZHANG Tianxiang, WANG Zhen. High-temperature resistant isomeric polyimide resins and their composites[J]. Acta Materiae Compositae Sinica, 2011, 28(6): 23-27. DOI: CNKI:11-1801/TB.20110720.1340.013
    [9]YU Yuxi, CAO Feng, LI Xiaodong. HIGH TEMPERATURE RESISTANCE SiC ( Al) FIBERS[J]. Acta Materiae Compositae Sinica, 2004, 21(5): 79-82.
    [10]Duan Deng-ping, Liu Zheng-xing, Luo Hai-an. ANALYSIS COMPUTATION ON MATERIAL NONLINEAR AND LARGE DEFORMATION OF FILAMENT WOUND CASE[J]. Acta Materiae Compositae Sinica, 1999, 16(1): 142-148.
  • Cited by

    Periodical cited type(4)

    1. 杨明琰,管舒仪,陈欣玥,蔡晓丹,兰萌,安琳玉,赖坤容. 麦秆基纳米纤维素过滤膜的制备及对微纳米颗粒的过滤性能. 化工新型材料. 2024(04): 217-222 .
    2. 唐雨霞,程士润,陈卫麒,金海军,王浩. DCG复合气凝胶的制备及对刚果红的吸附性能. 印染. 2024(04): 53-57 .
    3. 杨明琰,蔡晓丹,陈欣玥,安琳玉,邢建宇. 纳米纤维素-聚乙烯亚胺-聚吡咯复合气凝胶对Cr(VI)的光催化还原及循环吸附. 复合材料学报. 2024(06): 3032-3041 . 本站查看
    4. 陈响,胡莲薪,杜小停,杜伟杰,岳灿灿,郗艳丽. 聚乙烯醇复合水凝胶伤口敷料研究进展. 吉林医药学院学报. 2024(04): 301-305 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (1666) PDF downloads (136) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return